Publications by authors named "Nigel Birch"

While oxygen is essential for oxidative phosphorylation, O can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O pressure (PO) and has traditionally been assessed in O saturated media, PO at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation.

View Article and Find Full Text PDF

Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity.

View Article and Find Full Text PDF

The ability to study migratory behavior of immune cells is crucial to understanding the dynamic control of the immune system. Migration induced by chemokines is often assumed to be directional (chemotaxis), yet commonly used end-point migration assays are confounded by detecting increased cell migration that lacks directionality (chemokinesis). To distinguish between chemotaxis and chemokinesis we used the classic "under-agarose assay" in combination with video-microscopy to monitor migration of CCR7+ human monocyte-derived dendritic cells and T cells in response to a concentration gradient of CCL19.

View Article and Find Full Text PDF

Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels.

View Article and Find Full Text PDF

B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood.

View Article and Find Full Text PDF

T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells.

View Article and Find Full Text PDF

Aβ1-42 is involved in Alzheimer's disease (AD) pathogenesis and is prone to glycation, an irreversible process where proteins accumulate advanced glycated end products (AGEs). -(Carboxyethyl)lysine (CEL) is a common AGE associated with AD patients and occurs at either Lys-16 or Lys-28 of Aβ1-42. Methyglyoxal is commonly used for the unspecific glycation of Aβ1-42, which results in a complex mixture of AGE-modified peptides and makes interpretation of a causative AGE at a specific amino acid residue difficult.

View Article and Find Full Text PDF

The vertebrate brain is generally very sensitive to acidosis, so a hypoxia-induced decrease in pH is likely to have an effect on brain mitochondria (). Mitochondrial respiration (JO) is required to generate an electrical gradient (ΔΨm) and a pH gradient to power ATP synthesis, yet the impact of pH modulation on brain function remains largely unexplored. As intertidal fishes within rock pools routinely experience hypoxia and reoxygenation, they would most likely experience changes in cellular pH.

View Article and Find Full Text PDF

The amyloidogenic Aβ42 peptide was efficiently prepared using a double linker system, markedly improving solubility and chromatographic peak resolution, thus enabling full characterisation using standard techniques. The tag was readily cleaved with sodium hydroxide and removed by aqueous extraction, affording Aβ42 in high purity and yield for biophysical characterisation studies.

View Article and Find Full Text PDF

Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2.

View Article and Find Full Text PDF

It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms.

View Article and Find Full Text PDF

Oxidative stress plays a critical role in neuronal injury and is associated with various neurological diseases. Here, we explored the potential protective effect of neuroserpin against oxidative stress in primary cultured hippocampal neurons. Our results show that neuroserpin inhibits HO-induced neurotoxicity in hippocampal cultures as measured by WST, LDH release, and TUNEL assays.

View Article and Find Full Text PDF

The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface-bound and soluble forms. Here we show that plasmin cleaves surface-bound CCL21 to release the C-terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form.

View Article and Find Full Text PDF

Proopiomelanocortin (POMC) is a multivalent prohormone that can be processed into at least 7 biologically active peptide hormones. Processing can begin in the trans-Golgi network (TGN) and continues in the secretory granules of the regulated secretory pathway (RSP). Sorting of POMC into these granules is a complex process.

View Article and Find Full Text PDF

Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration.

View Article and Find Full Text PDF

NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity.

View Article and Find Full Text PDF

Contact between T cells and APCs and activation of an effective immune response trigger cellular polarization and the formation of a structured interface known as the immunological synapse. Interactions across the synapse and secretion of T cell and APC-derived factors into the perisynaptic compartment regulate synapse formation and activation of T cells. We report that the serine protease inhibitor neuroserpin, an axonally secreted protein thought to play roles in the formation of the neuronal synapse and refinement of synaptic activity, is expressed in human naïve effector memory and central memory subsets of CD4(+) and CD8(+) T cells, as well as monocytes, B cells, and NK cells.

View Article and Find Full Text PDF

Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton.

View Article and Find Full Text PDF

The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution-matrix-based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface-exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family.

View Article and Find Full Text PDF

Background: microRNAs (miRNAs) are emerging as key regulators of the immune system, but their role in CD8+ T cell differentiation is not well explored. Some evidence suggests that signals from cell surface receptors influence the expression of miRNAs in CD8+ T cells, and may have consequent effects on cell phenotype and function. We set out to investigate whether common gamma chain cytokines modulated human CD8+ T cell expression of miR-146a, which previous studies have associated with different stages of CD8+ differentiation.

View Article and Find Full Text PDF

Scope: Hops (Humulus lupulus L.) produce unique prenylflavonoids that exhibit interesting bioactivities. This study investigates the interactions between selected prenylflavonoids and breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic bioavailability and multidrug resistance (MDR).

View Article and Find Full Text PDF

Neuroserpin is a serine protease inhibitor, or serpin, that is expressed in the nervous system and inhibits the protease tissue plasminogen activator (tPA). Neuroserpin has been suggested to play a role in learning and memory but direct evidence for such a role is lacking. Here we have used an adeno-associated virus (AAV) vector expression system to investigate the effect of neuroserpin on hippocampal-dependent learning and memory in the young adult rat.

View Article and Find Full Text PDF

Polyacetylenes of the falcarinol type are present in vegetables such as carrots and parsley. They display interesting bioactivities and hold potential as health-promoting and therapeutic agents. In this study, falcarinol, falcarindiol, falcarindiol 3-acetate and falcarindiol 3,8-diacetate were examined for their modulation on breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic absorption and disposition, and multidrug resistance in cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the breast cancer resistance protein (ABCG2) affects the absorption and distribution of drugs and dietary plant compounds, focusing on its role in multidrug resistance.
  • Researchers tested 56 naturally-occurring phytochemicals, identifying several non-flavonoid compounds and novel flavonoids that significantly inhibit ABCG2’s transport function.
  • These findings suggest potential implications for understanding how dietary phytochemicals influence drug bioavailability and interactions, warranting further research in these areas.
View Article and Find Full Text PDF

Protein Z-dependent protease inhibitor (ZPI) is a plasma inhibitor of factor (F)Xa and FXIa. In an earlier study, five mutations were identified within the ZPI gene of venous thrombosis patients and healthy controls. Two of these were nonsense mutations and three were missense mutations in important regions of the protein.

View Article and Find Full Text PDF