Publications by authors named "Nifang Zhao"

Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require strain-insensitive thermal conductivity, as they generally undergo cyclic deformation. However, realizing such a property remains challenging mainly because conventional thermally conductive polymer composites generally lack a mechanically guided design.

View Article and Find Full Text PDF
Article Synopsis
  • Aerogels are excellent thermal insulators but struggle in textiles due to their fragility and processing issues.
  • Researchers developed a new aerogel fiber with a protective stretchy layer, allowing it to stretch up to 1000% while maintaining its insulation properties and durability.
  • The resulting fiber is lightweight, washable, and can be used to create thinner sweaters that perform similarly to down jackets, opening doors for multifunctional textile applications.
View Article and Find Full Text PDF

Ice formation on solid surfaces is a ubiquitous process in our daily life, and ice orientation plays a critical role in anti-icing/deicing, organ cryo-preservation, and material fabrication. Although previous studies have shown that surface grooves can regulate the orientation of ice crystals, whether the parallel or perpendicular alignment to the grooves is still under debate. Here, we systematically investigate ice formation and its oriented growth on grooved surfaces through both in situ observation and theoretical simulation, and discover a remarkable size effect of the grooves.

View Article and Find Full Text PDF

The demand for thermally conductive but electrically insulating materials has increased greatly in advanced electronic packaging. To this end, polymer-based composites filled with boron nitride (BN) nanosheets have been intensively studied as thermal interface material (TIM). However, it remains a great challenge to achieve isotropically ultrahigh thermal conductivity in BN/polymer composites due to the inherent thermal property anisotropy of BN nanosheets and/or the insufficient construction of the 3D thermal conductive network.

View Article and Find Full Text PDF

The extraordinary structural and mechanical features of nacre have been widely explored and translated into synthetic layered materials through various methods. However, it still remains challenging to achieve scale-up fabrication of these biomimetic layered materials, which is the main hurdle for their real applications. Herein, we report a facile, universal, and scalable strategy to produce bulk materials with nacre-mimetic architecture and performance.

View Article and Find Full Text PDF

Porous ceramic materials are attractive candidates for thermal insulation. However, effective ways to develop porous ceramics with high mechanical and thermal insulation performances are still lacking. Herein, an anisotropic porous silica ceramic with hierarchical architecture, i.

View Article and Find Full Text PDF

Cellular materials with excellent mechanical efficiency are essential for aerospace structures, lightweight vehicles, and energy absorption. However, current synthetic cellular materials, such as lattice materials with a unit cell arranged in an ordered hierarchy, are still far behind many biological cellular materials in terms of both structural complexity and mechanical performance. Here, the complex porous structure and the mechanics of the cuttlebone are studied, which acts as a rigid buoyancy tank for cuttlefish to resist large hydrostatic pressure in the deep-sea environment.

View Article and Find Full Text PDF

Ice-templating holds promise to become a powerful technique to construct high-performance bioinspired materials. Both ice nucleation and growth during the freezing process are crucial for the final architecture of the ice-templated material. However, effective ways to control these two very important factors are still lacking.

View Article and Find Full Text PDF

Replicating nacre's multiscale architecture represents a promising approach to design artificial materials with outstanding rigidity and toughness. It is highly desirable yet challenging to incorporate self-healing and shape-programming capabilities into nacre-mimetic composites due to their rigidity and high filler content. Here, we report such a composite obtained by infiltrating a thermally switchable Diels-Alder network polymer into a lamellar scaffold of alumina.

View Article and Find Full Text PDF

Materials combining lightweight, robust mechanical performances, and multifunctionality are highly desirable for engineering applications. Graphene aerogels have emerged as attractive candidates. Despite recent progresses, the bottleneck remains how to simultaneously achieve both strength and resilience.

View Article and Find Full Text PDF

Through designing hierarchical structures, particularly optimizing the chemical and architectural interactions at its inorganic/organic interface, nacre has achieved an excellent combination of contradictory mechanical properties such as strength and toughness, which is highly demanded yet difficult to achieve by most synthetic materials. Most techniques applied to develop nacre-mimetic composites have been focused on mimicking the "brick-and-mortar" structure, but the interfacial architectural features, especially the asperities and mineral bridges of "bricks", have been rarely concerned, which are of equal importance for enhancing mechanical properties of nacre. Here, we used a modified bidirectional freezing method followed by uniaxial pressing and chemical reduction to assemble a nacre-mimetic graphene/poly(vinyl alcohol) composite film, with both asperities and bridges introduced in addition to the lamellar layers to mimic the interfacial architectural interactions found in nacre.

View Article and Find Full Text PDF