Publications by authors named "Niewiesk S"

Article Synopsis
  • Human parainfluenza virus 3 (HPIV3) infection relies on the combined actions of the hemagglutinin-neuraminidase (HN) and fusion protein (F) to facilitate virus-cell membrane fusion for infection.
  • Unlike laboratory-adapted strains, field strains of HPIV3 have different cleavage motifs for the F protein, which are cleaved by specific, unidentified proteases found in limited cell types.
  • The study highlights that extracellular serine proteases, like TMPRSS2 and TMPRSS13, can activate the F protein for infectious virus release, suggesting that the activation process depends on the availability of these proteases in host cells.
View Article and Find Full Text PDF

Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation.

View Article and Find Full Text PDF

The development of "humanized" mice has become a prominent tool for translational animal studies of human diseases. Immunodeficient mice can be humanized by injections of human umbilical cord stem cells. The engraftment of these cells and their development into human lymphocytes has been made possible by the development of novel severely immunodeficient mouse strains.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the infectious cause of adult T-cell leukemia/lymphoma (ATL), an extremely aggressive and fatal malignancy of CD4 T-cells. Due to the chemotherapy-resistance of ATL and the absence of long-term therapy regimens currently available for ATL patients, there is an urgent need to characterize novel therapeutic targets against this disease. Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that is directly involved in the pathogenesis of multiple different lymphomas through the transcriptional regulation of relevant oncogenes.

View Article and Find Full Text PDF

Respiratory syncytial virus is an important cause of pneumonia in children, the elderly, and immunocompromised individuals. The attachment (G) protein of RSV generates neutralizing antibodies in natural RSV infection which correlate with protection against disease. The immune response to RSV is typically short-lived, which may be related to the heavy glycosylation of RSV-G.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1.

View Article and Find Full Text PDF

Serious infection with respiratory syncytial virus (RSV) is associated with high risk in infants, children, and elderly. There is currently no approved vaccine against RSV infection, and the only available prevention is immunoprophylaxis utilized in high-risk infants, leaving the elderly without many options. In the elderly, the chronic low-grade inflammatory state of the body can play a significant role during infection.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is one of the most important causes of respiratory disease in infants, immunocompromised individuals, and the elderly. Natural infection does not result in long-term immunity, and there is no licensed vaccine. Vesicular stomatitis virus (VSV) is a commonly used vaccine vector platform against infectious diseases, and has been used as a vector for a licensed Ebola vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers tracked HPIV3 infections in two patients over 278 and 98 days, discovering mutations in the virus’ hemagglutinin-neuraminidase (HN) protein that enhanced its ability to enter cells and persist over time.
  • * These mutations, particularly in the receptor-binding site of HN, were linked to antiviral treatments that affected host-cell components, suggesting that prolonged infections may drive viral adaptation to evade therapeutic efforts.
View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection is not only a childhood disease, but also a serious health risk for the elderly. We investigated in cotton rats how age affected viral clearance, immune responses, and whether pharmacological intervention was beneficial. Our results demonstrated that in geriatric animals, virus grew to similar titers, but with delayed clearance, compared to adult animals.

View Article and Find Full Text PDF

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) has been reported to use CX3CR1 as a receptor on cultured primary human airway epithelial cultures. To evaluate CX3CR1 as the receptor for RSV , we used the cotton rat animal model because of its high permissiveness for RSV infection. Sequencing the cotton rat CX3CR1 gene revealed 91% amino acid similarity to human CX3CR1.

View Article and Find Full Text PDF

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes.

View Article and Find Full Text PDF

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNARmice, IFNAR-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and young children worldwide. The attachment (G) protein of RSV is synthesized by infected cells in both a membrane bound (mG) and secreted form (sG) and uses a CX3C motif for binding to its cellular receptor. Cell culture and mouse studies suggest that the G protein mimics the cytokine CX3CL1 by binding to CX3CR1 on immune cells, which is thought to cause increased pulmonary inflammation in vivo.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in children of <5 years of age worldwide, infecting the majority of infants in their first year of life. Despite the widespread impact of this virus, no vaccine is currently available. For more than 50 years, live attenuated vaccines (LAVs) have been shown to protect against other childhood viral infections, offering the advantage of presenting all viral proteins to the immune system for stimulation of both B and T cell responses and memory.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children worldwide. Currently no vaccine is available to prevent RSV infection, but virus-neutralizing monoclonal antibodies can be given prophylactically, emphasizing the protective potential of antibodies. One concept of RSV vaccinology is mothers' immunization to induce high antibody titers, leading to passive transfer of high levels of maternal antibody to the fetus through the placenta and to the neonate through colostrum.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs.

View Article and Find Full Text PDF

The cotton rat (Sigmodon hispidus) is an excellent small animal model for human respiratory viral infections such as human respiratory syncytial virus (RSV) and human metapneumovirus (HMPV). These respiratory viral infections, as well as other pulmonary inflammatory diseases such as asthma, are associated with lung mechanic disturbances. So far, the pathophysiological effects of viral infection and allergy on cotton rat lungs have not been measured, although this information might be an important tool to determine the efficacy of vaccine and drug candidates.

View Article and Find Full Text PDF

Aged cotton rats () from an established breeding colony displayed signs of spontaneous exophthalmos. Of a total of 118 colony animals that were older than 6 mo of age, 37 (31%) displayed signs of exophthalmos. These rats were clinically healthy and had no other signs of disease.

View Article and Find Full Text PDF