Publications by authors named "Nieves Lavado"

The field of carbocatalysis, often portrayed by paradigmatic graphitic carbonaceous structures, has become a booming topic tailored for multiple applications. To this end, a new metal-free carbocatalyst has been constructed from simple prebiotic monomers such as cyanamide and glyoxal. The resulting material shows an excellent performance as photocatalyst for H production and CO valorization, thus unveiling its real value to tackle sustainable goals.

View Article and Find Full Text PDF

Background: Climate change modifies the content and phenolic profiles of grapes and wines. It is known that high temperatures, related to climate change, reduce anthocyanins and procyanidin (catechin and tannin) compounds accumulated in the berries. In recent years, with the aim of improving the phenolic composition of the berries, the technique of crop forcing has been proposed to delay grape ripening to a more favourable period of temperatures.

View Article and Find Full Text PDF

A multichannel, non-thermolytic and efficient pathway is described toward the formation of functionalized carbon nitride-like oligomers, starting from readily available cyanamide and glyoxal (in ratios >2), in aqueous media under mild conditions. Such oligomers can be isolated as stable solids that result from structures involving cyanamide self-additions along with structures formally derived from the condensation of cyanamide, dicyandiamide or melamine with glyoxal, leading occasionally to oxygen-containing units. The oligomeric aggregates have masses up to 500 u, as inferred from mass spectra analyses, and their formation can be rationalized in terms of polyadditions of cyanamide (up to 10-mer) and glyoxal.

View Article and Find Full Text PDF

In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a potential prebiotic scenario where aminoxazolines might have also played further roles as complexing and/or sequestering agents of other primeval blocks, namely amino acids. To this end, a bis-aminoxazoline derivative, generated from dihydroxyacetone and cyanamide, gives rise to stable co-crystal forms with dicarboxylic amino acids (Asp and Glu), while ionic interactions owing to proton transfer are inferred from spectroscopic data in aqueous solution. The structure of a 1:2 aminoxazoline: aspartic acid complex, discussed in detail, was elucidated by X-ray diffractometry.

View Article and Find Full Text PDF

A fundamental question in origin-of-life studies and astrochemistry concerns the actual processes that initiate the formation of reactive monomers and their oligomerization. Answers lie partly in the accurate description of reaction mechanisms compatible with environments plausible on early Earth as well as cosmological scenarios in planetary factories. Here we show in detail that reactions of urea-as archetypal prebiotic substance-and reactive carbonyls-exemplified by glyoxal-lead to a vast repertoire of oligomers, in which different five- and six-membered non-aromatic heterocycles self-assemble and insert into chains or dendritic-like structures with masses up to 1000 Da.

View Article and Find Full Text PDF

The condensation of cyanamide and glyoxal, two well-known prebiotic monomers, in an aqueous phase has been investigated in great detail, demonstrating the formation of oligomeric species of varied structure, though consistent with generalizable patterns. This chemistry involving structurally simple substances also illustrates the possibility of building molecular complexity under prebiotically plausible conditions, not only on Earth, but also in extraterrestrial scenarios. We show that cyanamide-glyoxal reactions in water lead to mixtures comprising both acyclic and cyclic fragments, largely based on fused five- and six-membered rings, which can be predicted by computation.

View Article and Find Full Text PDF

We report a detailed investigation into the nature of products that are generated by the reactions of cyanamide and glyoxal, two small molecules of astrochemical and prebiotic significance, under different experimental conditions. The experimental data suggest that the formation of oligomeric structures is related in part to the formation of insoluble tholins in the presence of oxygen-containing molecules. Although oligomerization proceeds well in water, product isolation turned out to be impractical.

View Article and Find Full Text PDF

We revisit herein the formation and structure of dihydroxy dioxanes, which can be obtained from prebiotically available precursors and can be regarded as primeval sugar surrogates. Previous studies dealing with the heterogeneous composition of interstellar bodies point to the existence of significant amounts of small polyalcohols along with oxygen-containing oligomers. Even though such derivatives did not give rise to nucleosides and oligonucleotides, nor they were incorporated into subsequent metabolic routes, molecular chimeras based on sugar-like species could be opportunistic scaffolds in pre-evolutionary scenarios.

View Article and Find Full Text PDF