Additive manufacturing (AM) has emerged as a transformative technology in the fabrication of intricate structures, offering unparalleled adaptability in crafting complex geometries. Particularly noteworthy is its burgeoning significance within the realm of medical prosthetics, owing to its capacity to seamlessly replicate anatomical forms utilizing biocompatible materials. Notably, the fabrication of porous architectures stands as a cornerstone in orthopaedic prosthetic development and bone tissue engineering.
View Article and Find Full Text PDF3D bioprinting involves using bioinks that combine biological and synthetic materials. The selection of the most appropriate cell-material combination for a specific application is complex, and there is a lack of consensus on the optimal conditions required. Plasma-loaded alginate and alginate/methylcellulose (Alg/MC) inks were chosen to study their viscoelastic behaviour, degree of recovery, gelation kinetics, and cell survival after printing.
View Article and Find Full Text PDFNew additive manufacturing techniques, such as melting electro-writing (MEW) or near-field electrospinning (NFES), are now used to include microfibers inside 3D printed scaffolds as FDM printers present a limited resolution in the XY axis, not making it easy to go under 100 µm without dealing with nozzle troubles. This work studies the possibility of creating reproducible microscopic internal fibers inside scaffolds printed by standard 3D printing. For this purpose, novel algorithms generating deposition routines (G-code) based on primitive geometrical figures were created by python scripts, modifying basic deposition conditions such as temperature, speed, or material flow.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2021
Skin wound healing is known to be impaired in space. As skin is the tissue mostly at risk to become injured during manned space missions, there is the need for a better understanding of the biological mechanisms behind the reduced wound healing capacity in space. In addition, for far-distant and long-term manned space missions like the exploration of Mars or other extraterrestrial human settlements, e.
View Article and Find Full Text PDFThe search of suitable combinations of stem cells, biomaterials and scaffolds manufacturing methods have become a major focus of research for bone engineering. The aim of this study was to test the potential of dental pulp stem cells to attach, proliferate, mineralize and differentiate on 3D printed polycaprolactone (PCL) scaffolds. A 100% pure M: 84,500 ± 1000 PCL was selected.
View Article and Find Full Text PDFFifty years after the first human landed on the Moon mankind has started to plan next steps for manned space exploration missions. The international space agencies have begun to investigate the requirements for both a human settlement on the Moon and manned missions to Mars. For such activities significantly improved medical treatment facilities on-board the spacecrafts or within the extraterrestrial settlements need to be provided as no fast return opportunities to Earth would exist anymore in case of severe trauma or illness.
View Article and Find Full Text PDFAdditive manufacturing (AM) techniques are becoming the approaches of choice for the construction of scaffolds in tissue engineering. However, the development of 3D printing in this field brings unique challenges, which must be accounted for in the design of experiments. The common printing process parameters must be considered as important factors in the design and quality of final 3D-printed products.
View Article and Find Full Text PDFExtrusion-based bioprinting, also known as 3D bioplotting, is a powerful tool for the fabrication of tissue equivalents with spatially defined cell distribution. Even though considerable progress has been made in recent years, there is still a lack of bioinks which enable a tissue-like cell response and are plottable at the same time with good shape fidelity. Herein, we report on the development of a bioink which includes fresh frozen plasma from full human blood and thus a donor/patient-specific protein mixture.
View Article and Find Full Text PDF