The aim of this study was to test the hypothesis that genetic variability is the key driver of mineral concentration in wheat grain in Mediterranean conditions. We grew 12 modern winter wheat varieties in semi-arid conditions and alkaline soils, in two consecutive years of contrasting water availability, and at three rates of N-fertilization: 64, 104, and 130 Kg N/ha. The genotype was the main driver of [Ca], [K], [Mg], and [S] in wheat grain, while the environmental conditions were more relevant for [Fe] and [Zn].
View Article and Find Full Text PDFThis study compares distinct phenotypic approaches to assess wheat performance under different growing temperatures and vernalization needs. A set of 38 (winter and facultative) wheat cultivars were planted in Valladolid (Spain) under irrigation and two contrasting planting dates: normal (late autumn), and late (late winter). The late plating trial exhibited a 1.
View Article and Find Full Text PDFEar density, or the number of ears per square meter (ears/m), is a central focus in many cereal crop breeding programs, such as wheat and barley, representing an important agronomic yield component for estimating grain yield. Therefore, a quick, efficient, and standardized technique for assessing ear density would aid in improving agricultural management, providing improvements in preharvest yield predictions, or could even be used as a tool for crop breeding when it has been defined as a trait of importance. Not only are the current techniques for manual ear density assessments laborious and time-consuming, but they are also without any official standardized protocol, whether by linear meter, area quadrant, or an extrapolation based on plant ear density and plant counts postharvest.
View Article and Find Full Text PDFBackground: The number of ears per unit ground area (ear density) is one of the main agronomic yield components in determining grain yield in wheat. A fast evaluation of this attribute may contribute to monitoring the efficiency of crop management practices, to an early prediction of grain yield or as a phenotyping trait in breeding programs. Currently the number of ears is counted manually, which is time consuming.
View Article and Find Full Text PDF