Perceptual coherence in the face of discrepant multisensory signals is achieved via the processes of multisensory integration, recalibration and sometimes motor adaptation. These supposedly operate on different time scales, with integration reducing immediate sensory discrepancies and recalibration and motor adaptation reflecting the cumulative influence of their recent history. Importantly, whether discrepant signals are bound during perception is guided by the brains' inference of whether they originate from a common cause.
View Article and Find Full Text PDFInformation about the position of our hand is provided by multisensory signals that are often not perfectly aligned. Discrepancies between the seen and felt hand position or its movement trajectory engage the processes of ) multisensory integration, ) sensory recalibration, and ) motor adaptation, which adjust perception and behavioral responses to apparently discrepant signals. To foster our understanding of the coemergence of these three processes, we probed their short-term dependence on multisensory discrepancies in a visuomotor task that has served as a model for multisensory perception and motor control previously.
View Article and Find Full Text PDFTo organize the plethora of sensory signals from our environment into a coherent percept, our brain relies on the processes of multisensory integration and sensory recalibration. We here asked how visuo-proprioceptive integration and recalibration are shaped by the presence of more than one visual stimulus, hence paving the way to study multisensory perception under more naturalistic settings with multiple signals per sensory modality. We used a cursor-control task in which proprioceptive information on the endpoint of a reaching movement was complemented by two visual stimuli providing additional information on the movement endpoint.
View Article and Find Full Text PDFSuccessful computer use requires the operator to link the movement of the cursor to that of his or her hand. Previous studies suggest that the brain establishes this perceptual link through multisensory integration, whereby the causality evidence that drives the integration is provided by the correlated hand and cursor movement trajectories. Here, we explored the temporal window during which this causality evidence is effective.
View Article and Find Full Text PDFThe brain integrates incoming sensory signals to a degree that depends on the signals' redundancy. Redundancy-which is commonly high when signals originate from a common physical object or event-is estimated by the brain from the signals' spatial and/or temporal correspondence. Here we tested whether verbally instructed knowledge of non-redundancy can also be used to reduce the strength of the sensory integration.
View Article and Find Full Text PDFSpatial proximity enhances the sensory integration of exafferent position information, likely because it indicates whether the information comes from a single physical source. Does spatial proximity also affect the integration of position information regarding an action (here a hand movement) with that of its visual effect (here a cursor motion), that is, when the sensory information comes from physically distinct objects? In this study, participants made out-and-back hand movements whereby the outward movements were accompanied by corresponding cursor motions on a monitor. Their subsequent judgments of hand or cursor movement endpoints are typically biased toward each other, consistent with an underlying optimal integration mechanism.
View Article and Find Full Text PDFThe brain needs to identify redundant sensory signals in order to integrate them optimally. The identification process, referred to as causal inference, depends on the spatial and temporal correspondence of the incoming sensory signals ('online sensory causality evidence') as well as on prior expectations regarding their causal relation. We here examine whether the same causal inference process underlies spatial integration of actions and their visual consequences.
View Article and Find Full Text PDFEur J Neurosci
December 2017
In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.
View Article and Find Full Text PDFHumans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other.
View Article and Find Full Text PDFSensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible.
View Article and Find Full Text PDFHow does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's "angular mass") under different force conditions, using the Weber fraction to quantify perceptual precision.
View Article and Find Full Text PDFIn the present study, we sought to unravel how exploratory movements affect length perception of rods that are held in and wielded by hand. We manipulated the mechanical rod properties--mass (m), first moment of mass distribution (M), major principal moment of inertia (I(1))--individually, allowing us to assess the relative contribution of each of these mechanical variables to the perceptual judgment. Furthermore we developed a method to quantify the force components of the mechanical variables in the total of forces acting at the hand-rod interface, and we calculated each component's relative contribution.
View Article and Find Full Text PDF