Background: The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing.
View Article and Find Full Text PDFThe adipose-derived stromal vascular fraction (SVF) is considered to be an attractive source of stem cells in cell therapy. Besides stem cells, it also contains functional cells, such as macrophages, precursor cells, somatic stem cells, and pericytes. Collagenase digestion is the most frequently used method to isolate SVF, but it is time-consuming and costly and has some problems, such as infectious agents and immune reactions.
View Article and Find Full Text PDFIntroduction: Astragaloside IV (AS-IV) is a natural herb extract and a popular compound used in traditional Chinese medicine because of its effect on multiple biological processes, such as promotion of cell proliferation, improvement in cardiopulmonary and vascular function, and promotion of angiogenesis around wounds, leading to accelerated wound healing. Vascular regeneration primarily results from the differentiation of endothelial progenitor cells (EPCs). Biomedical acceleration of angiogenesis and differentiation of EPCs around the wound remain challenging.
View Article and Find Full Text PDFBackground Aims: Combining the use of transfection reagents and physical methods can markedly improve the efficiency of gene delivery; however, such methods often cause cell damage. Additionally, naked plasmids without any vector or physical stimulation are difficult to deliver into stem cells. In this study, we demonstrate a simple and rapid method to simultaneously facilitate efficient in situ naked gene delivery and form a bioactive hydrogel scaffold.
View Article and Find Full Text PDFIn this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized.
View Article and Find Full Text PDFThe pigment melanin is produced by melanocytes, is primarily responsible for skin color, and protects it against ultraviolet rays that can cause the destruction of genetic material within the keratinocytes. To elucidate the mechanisms of many diseases associated with melanocytes, such as melanoma and albinism, or burns with uneven pigment distribution, the disease model needs to be established first. In this study, we aimed to construct the melanocyte model from patients in a short period.
View Article and Find Full Text PDFSkin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel.
View Article and Find Full Text PDFSignificant skin pigmentation changes occur when patients suffer deep burn injuries. These pigmentation disorders may cause not only cosmetic and psychological issues, but more importantly it increases the risk of skin cancer or photoaging. Severe burns significantly effect on the process of repigmentation as the pigmentation is tightly regulated by cell proliferation and differentiation of melanocytes and melanocyte stem cells which are housing in the epidermis and hair follicles of the skin.
View Article and Find Full Text PDFMassive bleeding is the leading cause of battlefield-related deaths and the second leading cause of deaths in civilian trauma centers. One of the challenges of managing severe wounds is the need to promote hemostasis as quickly as possible, which can be achieved by using hemostatic dressings. In this study, we fabricated 2 kinds of gelatin/polycaprolactone composites with 2 ratios of gelatin/polycaprolactone, 1:1 and 2:1 (GP11 and GP21, respectively).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
Spongelike porous silica nanosheets, with nanometer thicknesses and pores whose diameters are on the hundreds-of-nanometers scale, have been used as a novel carrier for molecular immobilization of different guests. Enhanced properties of encapsulation were shown for drug molecules of different dimensions due to "softness" caused by the specific nanometric features of the porous structure. The encapsulating effect of the structure results in sustained and stimuli-responsive release behavior of immobilized guest molecules.
View Article and Find Full Text PDFGene delivery is often accomplished by the forward or reverse transfection protocol. In either protocol, a transfection reagent (usually cationic) is added to increase the delivery efficiency. In this study, we employed a series of nanosheet networks to facilitate the delivery of naked plasmid DNA into human mesenchymal stem cells (hMSCs).
View Article and Find Full Text PDFGene delivery into cells can be facilitated by adding plasmid DNA/transfection reagent complexes in culture medium or pre-adsorbing the complexes on the substrate before cell seeding. Using transfection reagents, however, often causes cytotoxicity. Effective delivery of naked plasmid without any transfection reagent remains a challenge.
View Article and Find Full Text PDFThe structural evolution of three-dimensional spheroids self-assembled from two different types of cells on selective biomaterials is demonstrated in this study. The two types of cells involved in the self-assembly are human mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). When seeded in different population ratios, they can create a variety of cellular patterns on different biomaterial substrates.
View Article and Find Full Text PDF