To prevent foodborne infections from pigs and cattle, the whole food chain must act to minimize the contamination of products, including biosecurity measures which prevent infections via feed and the environment in production farms. Rodents and other small mammals can be reservoirs of and key vectors for transmitting zoonotic bacteria and viruses to farm animals, through direct contact but more often through environmental contamination. In line with One Health concept, we integrated results from a sampling study of small mammals in farm environments and data from a capture-recapture experiment into a probabilistic model which quantifies the degree of environmental exposure of zoonotic bacteria by small mammals to farm premises.
View Article and Find Full Text PDFThere has been a significant increase in the number of reported human cryptosporidiosis cases in recent years. The aim of this study is to estimate the prevalence of spp. in wild rodents and shrews, and investigate the species and genotype distribution to assess zoonotic risk.
View Article and Find Full Text PDFSmall mammals are known to carry spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
September 2020
Yersinia enterocolitica and Yersinia pseudotuberculosis are important zoonotic bacteria causing human enteric yersiniosis commonly reported in Europe. All Y. pseudotuberculosis strains are considered pathogenic, while Y.
View Article and Find Full Text PDFLjungan virus (LV) is a picornavirus originally isolated from Swedish bank voles ( Myodes glareolus ) in 1998. The association of LV with human disease has been debated ever since, but fundamental data on the ecology of the virus are still lacking. Here we present results of the first intensive study on the prevalence of LV in bank voles trapped in Fennoscandia (Sweden and Finland) from 2009-12 as determined by PCR.
View Article and Find Full Text PDFUnderstanding how host dynamics, including variations of population size and dispersal, may affect the epidemiology of infectious diseases through ecological and evolutionary processes is an active research area. Here we focus on a bank vole (Myodes glareolus) metapopulation surveyed in Finland between 2005 and 2009. Bank vole is the reservoir of Puumala hantavirus (PUUV), the agent of nephropathia epidemica (NE, a mild form of hemorrhagic fever with renal symptom) in humans.
View Article and Find Full Text PDFVoles (Arvicolinae, Rodentia) are known carriers of zoonotic bacteria such as Bartonella spp. and Francisella tularensis. However, apart from F.
View Article and Find Full Text PDFUnderstanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle.
View Article and Find Full Text PDFIn the event of suspected releases or natural outbreaks of contagious pathogens, rapid identification of the infectious agent is essential for appropriate medical intervention and disease containment. The purpose of this study was to compare the performance of a novel portable real-time PCR thermocycler, PikoReal™, to the standard real-time PCR thermocycler, Applied Biosystems® 7300 (ABI 7300), for the detection of three high-risk biothreat bacterial pathogens: Francisella tularensis, Bacillus anthracis and Yersinia pestis. In addition, a novel confirmatory real-time PCR assay for the detection of F.
View Article and Find Full Text PDFThe knowledge of viral shedding patterns and viraemia in the reservoir host species is a key factor in assessing the human risk of zoonotic viruses. The shedding of hantaviruses (family Bunyaviridae) by their host rodents has widely been studied experimentally, but rarely in natural settings. Here we present the dynamics of Puumala hantavirus (PUUV) shedding and viraemia in naturally infected wild bank voles (Myodes glareolus).
View Article and Find Full Text PDFHantaviruses are emerging viruses carried by rodents, soricomorphs (shrews and moles) and bats. In Finland, Puumala virus (PUUV) was for years the only hantavirus detected. In 2009, however, Seewis virus (SWSV) was reported from archival common shrew (Sorex araneus) samples collected in 1982 in Finland.
View Article and Find Full Text PDFFrancisella tularensis is a highly virulent intracellular bacterium causing the zoonotic disease tularemia. It recurrently causes human and animal outbreaks in northern Europe, including Finland. Although F.
View Article and Find Full Text PDFPuumala virus causes nephropathia epidemica, a rodent-borne zoonosis that is endemic to Europe. We sequenced the complete Puumala virus genome that was directly recovered from a person who died and compared it with those of viruses from local bank voles. The virus strain involved was neither a unique nor rare genetic variant.
View Article and Find Full Text PDFPuumala hantavirus (PUUV) causes a mild form of haemorrhagic fever with renal syndrome in Europe. Seven genetic lineages of PUUV have thus far been recorded, which exhibit geographic structure within the distribution of its natural host, the bank vole (Myodes glareolus). This study presents evidence for two distinct PUUV lineages co-circulating in Latvia: one previously described from Russia and a novel one that appears to be endemic.
View Article and Find Full Text PDFThe genus Orthopoxvirus includes variola (smallpox) virus and zoonotic cowpox virus (CPXV). All orthopoxviruses (OPV) are serologically cross-reactive and cross-protective, and after the cessation of smallpox vaccination, CPXV and other OPV infections represent an emerging threat to human health. In this respect CPXV, with its reservoir in asymptomatically infected wild rodents, is of special importance.
View Article and Find Full Text PDFRodents might maintain tick-borne encephalitis virus (TBEV) in nature through latent persistent infections. During 2 subsequent winters, 2008 and 2009, in Finland, we detected RNA of European and Siberian subtypes of TBEV in Microtus agrestis and Myodes glareolus voles, respectively. Persistence in rodent reservoirs may contribute to virus overwintering.
View Article and Find Full Text PDFIn Europe, Dobrava-Belgrade (DOBV), Saaremaa (SAAV), and Puumala (PUUV) viruses are known to cause hemorrhagic fever with renal syndrome (HFRS). All three hantaviruses are now found in Croatia. Lung tissue samples of 315 Apodemus mice trapped in 2003-2004 were screened for the presence of hantaviral N-Ag and 20 mice (6.
View Article and Find Full Text PDFHantavirus genome sequences were recovered from tissue samples of Myodes rufocanus, Microtus fortis and Microtus oeconomus captured in the Baikal area of Buryatia, Russian Federation. Genetic analysis of S- and M-segment sequences of Buryatian hantavirus strains showed that Myodes-associated strains belong to Hokkaido virus (HOKV) type while Microtus-associated strains belong to Vladivostok virus (VLAV) type. On phylogenetic trees Buryatian HOKV strains were clustered together with M.
View Article and Find Full Text PDFGenomic sequences of Tula (TULV) hantavirus were recovered from tissue samples of European common voles Microtus arvalis (subspecies obscurus) captured in Kazakhstan, Central Asia. Phylogenetic analysis of the S genomic segment of Kazakh TULV strains showed that they form distinct, well supported genetic lineage and share a more ancient common ancestor with two Russian lineages of TULV. The deduced sequence of the nucleocapsid (N) protein of Kazakh TULV strains carried specific amino acid signature: T274Q276T281.
View Article and Find Full Text PDFBackground: Borna disease virus (BDV) can infect many vertebrate species, including humans. BDV infection may lead to meningoencephalomyelitis in animals. An association with human neuropsychiatric diseases has been reported, but the causal relationship between BDV and human disease remains unclear.
View Article and Find Full Text PDF