Background: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans.
Methods: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm, respectively.
Objectives: Cardiac motion artifacts hinder the assessment of coronary arteries in coronary computed tomography angiography (CCTA). We investigated the impact of motion compensation reconstruction (MCR) on motion artifacts in CCTA at various heart rates (HR) using a dynamic phantom.
Materials And Methods: An artificial hollow coronary artery (5-mm diameter lumen) filled with iodinated contrast agent (400 HU at 120 kVp), positioned centrally in an anthropomorphic chest phantom, was scanned using a dual-layer spectral detector CT.
Background: Substantial variation in Agatston scores (AS) acquired with different computed tomography (CT) scanners may influence patient risk classification.
Objectives: This study sought to develop a calibration tool for state-of-the-art CT systems resulting in vendor-neutral AS (vnAS), and to assess the impact of vnAS on coronary heart disease (CHD) event prediction.
Methods: The vnAS calibration tool was derived by imaging 2 anthropomorphic calcium containing phantoms on 7 different CT and 1 electron beam tomography system, which was used as the reference system.
Noninvasive cardiac imaging has rapidly evolved during the last decade owing to improvements in computed tomography (CT)-based technologies, among which we highlight the recent introduction of the first clinical photon-counting detector CT (PCD-CT) system. Multiple advantages of PCD-CT have been demonstrated, including increased spatial resolution, decreased electronic noise, and reduced radiation exposure, which may further improve diagnostics and may potentially impact existing management pathways. The benefits that can be obtained from the initial experiences with PCD-CT are promising.
View Article and Find Full Text PDFPurpose: To systematically assess the radiation dose reduction potential of coronary artery calcium (CAC) assessments with photon-counting computed tomography (PCCT) by changing the tube potential for different patient sizes with a dynamic phantom.
Methods: A hollow artery, containing three calcifications of different densities, was translated at velocities corresponding to 0, < 60, 60-75, and > 75 beats per minute within an anthropomorphic phantom. Extension rings were used to simulate average- and large -sized patients.
Filtered back projection (FBP) has been the standard CT image reconstruction method for 4 decades. A simple, fast, and reliable technique, FBP has delivered high-quality images in several clinical applications. However, with faster and more advanced CT scanners, FBP has become increasingly obsolete.
View Article and Find Full Text PDFTo evaluate whether the contrast-to-noise ratio (CNR) of an iodinated contrast agent in virtual monoenergetic images (VMI) from the first clinical photon-counting detector (PCD) CT scanner is superior to VMI CNR from a dual-source dual-energy CT scanner with energy-integrating detectors (EID), two anthropomorphic phantoms in three different sizes (thorax and abdomen, QRM GmbH), in combination with a custom-built insert containing cavities filled with water, and water with 15 mg iodine/mL, were scanned on an EID-based scanner (Siemens SOMATOM Force) and on a PCD-based scanner (Siemens, NAEOTOM Alpha). VMI (range 40−100 keV) were reconstructed without an iterative reconstruction (IR) technique and with an IR strength of 60% for the EID technique (ADMIRE) and closest matching IR strengths of 50% and 75% for the PCD technique (QIR). CNR was defined as the difference in mean CT numbers of water, and water with iodine, divided by the root mean square value of the measured noise in water, and water with iodine.
View Article and Find Full Text PDFBackground: Coronary artery calcium is a well-known predictor of major adverse cardiac events and is usually scored manually from dedicated, ECG-triggered calcium scoring CT (CSCT) scans. In clinical practice, a myocardial perfusion PET scan is accompanied by a non-ECG triggered low dose CT (LDCT) scan. In this study, we investigated the accuracy of patients' cardiovascular risk categorisation based on manual, visual, and automatic AI calcium scoring using the LDCT scan.
View Article and Find Full Text PDFObjectives: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels.
Methods: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database.
To systematically compare coronary artery calcium (CAC) quantification between conventional computed tomography (CT) and photon-counting CT (PCCT) at different virtual monoenergetic (monoE) levels for different heart rates. A dynamic (heart rates of 0, < 60, 60-75, and > 75 bpm) anthropomorphic phantom with three calcification densities was scanned using routine clinical CAC protocols with CT and PCCT. In addition to the standard clinical protocol of 70 keV, PCCT images were reconstructed at monoE levels of 72, 74, and 76 keV.
View Article and Find Full Text PDFIn order to assess coronary artery calcium (CAC) quantification reproducibility for photon-counting computed tomography (PCCT) at reduced tube potential, an anthropomorphic thorax phantom with low-, medium-, and high-density CAC inserts was scanned with PCCT (NAEOTOM Alpha, Siemens Healthineers) at two heart rates: 0 and 60-75 beats per minute (bpm). Five imaging protocols were used: 120 kVp standard dose (IQ level 16, reference), 90 kVp at standard (IQ level 16), 75% and 45% dose and tin-filtered 100 kVp at standard dose (IQ level 16). Each scan was repeated five times.
View Article and Find Full Text PDFBackground: Motion artifacts affect the images of coronary calcified plaques. This study utilized convolutional neural networks (CNNs) to classify the motion-contaminated images of moving coronary calcified plaques and to determine the influential factors for the classification performance.
Methods: Two artificial coronary arteries containing four artificial plaques of different densities were placed on a robotic arm in an anthropomorphic thorax phantom.
Objective: The aim of the current study was, first, to assess the coronary artery calcium (CAC) scoring potential of spectral photon-counting CT (SPCCT) in comparison with computed tomography (CT) for routine clinical protocols. Second, improved CAC detection and quantification at reduced slice thickness were assessed.
Methods: Raw data was acquired and reconstructed with several combinations of reduced slice thickness and increasing strengths of iterative reconstruction (IR) for both CT systems with routine clinical CAC protocols for CT.
Objectives: To evaluate the image quality (IQ) of a spectral photon-counting CT (SPCCT) using filtered back projection (FBP) and hybrid iterative reconstruction (IR) algorithms (iDose), in comparison with a dual-layer CT (DLCT) system, and to choose the best image quality according to the IR level for SPCCT.
Methods: Two phantoms were scanned using a standard lung protocol (120 kVp, 40 mAs) with SPCCT and DLCT systems. Raw data were reconstructed using FBP and 9 iDose levels (i1/i2/i3/i4/i5/i6/i7/i9/i11) for SPCCT and 7 for DLCT (i1/i2/i3/i4/i5/i6/i7).
Objectives: The purpose of this study was twofold. First, the influence of a novel calcium-aware (Ca-aware) computed tomography (CT) reconstruction technique on coronary artery calcium (CAC) scores surrounded by a variety of tissues was assessed. Second, the performance of the Ca-aware reconstruction technique on moving CAC was evaluated with a dynamic phantom.
View Article and Find Full Text PDFObjective: Coronary artery calcium (CAC) score is a strong predictor for future adverse cardiovascular events. Anthropomorphic phantoms are often used for CAC studies on computed tomography (CT) to allow for evaluation or variation of scanning or reconstruction parameters within or across scanners against a reference standard. This often results in large number of datasets.
View Article and Find Full Text PDFObjective: To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium.
Methods And Materials: A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70-150 and Sn100 kVp) and automatically.
Background: Quantitative SPECT imaging in targeted radionuclide therapy with lutetium-177 holds great potential for individualized treatment based on dose assessment. The establishment of dose-effect relations requires a standardized method for SPECT quantification. The purpose of this multi-center study is to evaluate quantitative accuracy and inter-system variations of different SPECT/CT systems with corresponding commercially available quantitative reconstruction algorithms.
View Article and Find Full Text PDFUnlabelled: Absolute quantification of radiotracer distribution using SPECT/CT imaging is of great importance for dosimetry aimed at personalized radionuclide precision treatment. However, its accuracy depends on many factors. Using phantom measurements, this multi-vendor and multi-center study evaluates the quantitative accuracy and inter-system variability of various SPECT/CT systems as well as the effect of patient size, processing software and reconstruction algorithms on recovery coefficients (RC).
View Article and Find Full Text PDFObjective: To classify motion-induced blurred images of calcified coronary plaques so as to correct coronary calcium scores on nontriggered chest CT, using a deep convolutional neural network (CNN) trained by images of motion artifacts.
Methods: Three artificial coronary arteries containing nine calcified plaques of different densities (high, medium, and low) and sizes (large, medium, and small) were attached to a moving robotic arm. The artificial arteries moving at 0-90 mm/s were scanned to generate nine categories (each from one calcified plaque) of images with motion artifacts.
J Cardiovasc Comput Tomogr
February 2020
Coronary artery calcium (CAC) is a strong predictor for future cardiovascular events. Traditionally CAC has been quantified using the Agatston score, which was developed in the late 1980s for electron beam tomography (EBT). While EBT has been completely replaced by modern multiple-detector row CT technology, the traditional CAC scoring method by Agatston remains in use, although the literature indicates suboptimal reproducibility and subjects being incorrectly classified.
View Article and Find Full Text PDFMultiple dose reduction techniques have been introduced for coronary artery calcium (CAC) computed tomography (CT), but few have emerged into clinical practice while an increasing number of patients undergo CAC scanning. We sought to determine to what extend the radiation dose in CAC CT can be safely reduced without a significant impact on cardiovascular disease (CVD) risk stratification. A systematic database-review of articles published from 2002 until February 2018 was performed in Pubmed, WebOfScience, and Embase.
View Article and Find Full Text PDFUltrasound image degradation originates primarily from transducer defects and potentially undermines reliable image interpretation. Systematic quantitative quality control is often neglected due to the limited resources available for this task. We propose a quantitative quality control based on in-air reverberation images.
View Article and Find Full Text PDF