Variations in oxygen levels play key roles in numerous physiological and pathological processes, but are often not properly controlled in models, introducing a significant bias in experimental outcomes. Recent developments in microfluidic technology have introduced a paradigm shift by providing new opportunities to better mimic physiological and pathological conditions, which is achieved by both regulating and monitoring oxygen levels at the micrometre scale in miniaturized devices. In this review, we first introduce the nature and relevance of oxygen-dependent pathways in both physiological and pathological contexts.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
October 2021
The domain of transcription regulation has been notoriously difficult to annotate in the Gene Ontology, partly because of the intricacies of gene regulation which involve molecular interactions with DNA as well as amongst protein complexes. The molecular function 'transcription coregulator activity' is a part of the biological process 'regulation of transcription, DNA-templated' that occurs in the cellular component 'chromatin'. It can mechanistically link sequence-specific DNA-binding transcription factor (dbTF) regulatory DNA target sites to coactivator and corepressor target sites through the molecular function 'cis-regulatory region sequence-specific DNA binding'.
View Article and Find Full Text PDF