Publications by authors named "Niels Van Best"

By longitudinally following a large cohort of intercontinental travellers, this study highlights the importance of considering multiple risk factors to comprehend post-infectious irritable bowel syndrome (PI-IBS). Stomach cramps, antibiotic use and nausea during travel were amongst the variables that predicted PI-IBS development following an episode of traveller’s diarrhoea.

View Article and Find Full Text PDF

Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions.

View Article and Find Full Text PDF

Individual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network.

View Article and Find Full Text PDF
Article Synopsis
  • Early-life immune development is essential for long-term health, but the factors influencing postnatal immune maturation are not well understood.
  • The study focused on mononuclear phagocytes in Peyer's patches, showing significant age-related changes that led to reduced T cell priming in young organisms.
  • The research identified that the differentiation of follicle-associated epithelium M cells is crucial for driving the maturation of these immune cells after weaning.
View Article and Find Full Text PDF

The human gut microbiota has been shown to be significantly perturbed by antibiotic use, while recovering to the pre-treatment state several weeks after short antibiotic exposure. The effects of antibiotics on the gut microbiota have however been mainly documented in high-income settings with lower levels of antibiotic resistance as compared to lower and middle income countries (LMIC). This study aimed to examine the long-term consequences of repeated exposure to commonly use antibiotics on the fecal microbiota of residents living in a low income setting with high prevalence of antibiotic resistance.

View Article and Find Full Text PDF

Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing.

View Article and Find Full Text PDF

While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of H NMR spectra in combination with multivariate statistical modeling.

View Article and Find Full Text PDF

The introduction of solid foods is an important dietary event during infancy that causes profound shifts in the gut microbial composition towards a more adult-like state. Infant gut bacterial dynamics, especially in relation to nutritional intake remain understudied. Over 2 weeks surrounding the time of solid food introduction, the day-to-day dynamics in the gut microbiomes of 24 healthy, full-term infants from the Baby, Food & Mi and LucKi-Gut cohort studies were investigated in relation to their dietary intake.

View Article and Find Full Text PDF

The first exposures to microbes occur during infancy and it is suggested that this initial colonization influences the adult microbiota composition. Despite the important role that the gut microbiome may have in health outcomes later in life, the factors that influence its development during infancy and early childhood have not been characterized fully. Guidelines about the introduction of solid foods and cessation of breastfeeding, which is thought to have a significant role in the transition to a more adult-like microbiota, are not based on microbiome research.

View Article and Find Full Text PDF

The enteric microbiota exerts a major influence on the host. It promotes food degradation, nutrient absorption, immune maturation and protects from infection with pathogenic microorganisms. However, certain compositional alterations also enhance the risk to develop metabolic, inflammatory and immune-mediated diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Probiotic bacteria are given to preterm neonates to help prevent necrotizing enterocolitis (NEC), but their effects on the natural microbiome are still not fully clear.
  • In a study of 80 preterm infants, researchers tested two different probiotic formulas, analyzing fecal samples to see how these supplements affected the gut microbiome and the emergence of NEC.
  • Findings revealed that probiotics led to distinct microbiota profiles and a lower incidence of NEC, with successful but mostly temporary colonization of beneficial bifidobacteria in about half the infants.
View Article and Find Full Text PDF

Although infection with the human enteropathogen causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has instigated the research on the role of the microbiome in health and disease. The compositional nature of such microbiome datasets makes it however challenging to identify those microbial taxa that are truly associated with an intervention or health outcome. Quantitative microbiome profiling overcomes the compositional structure of microbiome sequencing data by integrating absolute quantification of microbial abundances into the NGS data.

View Article and Find Full Text PDF

Non-communicable diseases, such as the metabolic syndrome and inflammatory bowel disease, constitute serious public health threats in developed countries. Besides environmental factors, genetic predispositions contribute to the onset and progression of the disease. mouse models recently highlight the involvement of Toll-like receptor 5 (TLR5)-driven microbiota composition in the development of metabolic disorders.

View Article and Find Full Text PDF

Background & Aims: Establishment of the gastrointestinal microbiota during infancy affects immune system development and oral tolerance induction. Perturbations in the microbiome during this period can contribute to development of immune-mediated diseases. We monitored microbiota maturation and associations with subsequent development of allergies in infants and children.

View Article and Find Full Text PDF

Oral tolerance to soluble antigens is critically important for the maintenance of immunological homeostasis in the gut. The mechanisms of tolerance induction to antigens of the gut microbiota are still less well understood. Here, we investigate whether the subcellular localization of antigens within non-pathogenic E.

View Article and Find Full Text PDF

The gut microbiota represents a complex and diverse ecosystem with a profound impact on human health, promoting immune maturation, and host metabolism as well as colonization resistance. Important members that have often been disregarded are the methanogenic archaea. Methanogenic archaea reduce hydrogen levels via the production of methane, thereby stimulating food fermentation by saccharolytic bacteria.

View Article and Find Full Text PDF

Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet.

View Article and Find Full Text PDF

The human gut microbiota is a complex and dynamic ecosystem, which naturally lives in a symbiotic relationship with the host. Perturbations of the microbial composition (dysbiosis) and reduced diversity may promote disease susceptibility and recurrence. In contrast to the mature intestinal microbiota of healthy adults, which appears relatively stable over time, the infant's microbiome only establishes and matures during the first years of life.

View Article and Find Full Text PDF

The role of intestinal bacteria in the pathogenesis of nonalcoholic fatty liver disease is increasingly acknowledged. Recently developed microbial profiling techniques are beginning to shed light on the nature of gut microbiota alterations in nonalcoholic fatty liver disease. In this review, we summarize the gut microbiota composition changes that have been reported during different stages of human nonalcoholic fatty liver disease, and highlight the relation between bile acids and gut bacteria in this context.

View Article and Find Full Text PDF

Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects.

View Article and Find Full Text PDF