Publications by authors named "Niels Tygstrup"

Background: Despite its biologic plausibility, the association between liver function and mortality of patients with chronic liver disease is not well supported by data. Therefore, we examined whether the galactose elimination capacity (GEC), a physiological measure of the total metabolic capacity of the liver, was associated with mortality in a large cohort of patients with newly-diagnosed cirrhosis.

Methods: By combining data from a GEC database with data from healthcare registries we identified cirrhosis patients with a GEC test at the time of cirrhosis diagnosis in 1992-2005.

View Article and Find Full Text PDF

Objectives: Growth hormone (GH) reduces the catabolic side effects of steroid treatment via effects on the amino-nitrogen metabolism. Ipamorelin is a synthetic peptide with GH releasing properties. We wished to study the metabolic effects of Ipamorelin and GH on selected hepatic measures of alpha-amino-nitrogen conversion during steroid-induced catabolism.

View Article and Find Full Text PDF

Thy-1, a marker of hematopoietic stem cells, has been reported to be expressed by oval cells proliferating during stem cell-mediated regeneration in rat liver, suggesting a relationship between the two cell populations. Consequently, Thy-1 has become an accepted cell surface marker to sort hepatic oval cells. In the present study we used the well-characterized 2-acetylaminfluorene/partial hepatectomy model to induce transit-amplification of hepatic oval cells in the regenerating liver and characterized Thy-1 expression using Northern hybridization, quantitative reverse transcriptase-polymerase chain reaction analysis, immunofluorescence confocal microscopy, and immunoelectronmicroscopy.

View Article and Find Full Text PDF

Aim: In patients with cirrhosis, endotoxemia is frequent and the vitally important capacity for urea synthesis is impaired. The patients' mortality of infection is markedly increased, which could be related to adverse metabolic effects of endotoxins. The effects of endotoxins on in vivo urea synthesis and on urea cycle genes during cirrhosis are unknown.

View Article and Find Full Text PDF

Unlabelled: The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic lineages. Although the protocols are numerous and often used interchangeably across species, a thorough comparative phenotypic analysis of oval cells in rats and mice using well-established and generally acknowledged molecular markers has not been provided. In the present study, we evaluated and compared the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro-collidin (DDC) diet; and N-acetyl-paraaminophen (APAP).

View Article and Find Full Text PDF

Background & Aims: Acute and chronic kidney failure lead to catabolism with loss of lean body mass. Up-regulation of hepatic urea synthesis may play a role for the loss of body nitrogen and for the level of uraemia. The aims were to investigate the effects of early and late experimental renal failure on the regulation of hepatic urea synthesis and the expression of urea cycle enzyme genes in the liver.

View Article and Find Full Text PDF

Background: In patients with cirrhosis, infection is frequent and a leading cause of death. This is secondary to various immunologic abnormalities in both the innate and the adaptive immune system. However, it remains unclear whether cirrhosis affects the inflammatory systemic component of the innate immunity, 'the acute phase response', mostly effectuated by the liver itself.

View Article and Find Full Text PDF

Background: The acute phase response causes a negative nitrogen balance. It is unknown whether this involves regulation of hepatic urea synthesis.

Methods: We examined the in vivo capacity of urea nitrogen synthesis (CUNS), mRNA levels of urea cycle enzyme genes and galactose elimination capacity (GEC) during moderate and severe acute phase response induced by low- and high-dose lipopolysaccharide (LPS) in rats.

View Article and Find Full Text PDF

Background & Aims: Patients with acetaminophen-induced fulminant hepatic failure may have the capacity for recovery if sufficient liver cell mass remains to allow regeneration. We investigated the prognostic potential of the galactose elimination capacity (GEC) as a noninvasive measurement of functioning liver cell mass in severe acetaminophen-induced hepatotoxicity.

Methods: All patients admitted with acetaminophen poisoning during a 10-year period were studied retrospectively.

View Article and Find Full Text PDF

Hepatic regeneration from toxic or surgical injury to the adult mammalian liver, endorses different cellular responses within the hepatic lineage. The molecular mechanisms determining commitment of a cell population at a specific lineage level to participate in liver repair as well as the fate of its progeny in the hostile environment created by the injury are not well defined. Based on the role of the Notch/Delta/Jagged system in cell fate specification and recent reports linking Notch signaling with normal bile duct formation in mouse and human liver, we examined the expression of Notch1, Notch2, Notch3, Delta1, Delta3, Jagged1, and Jagged2, and delta-like protein/preadipocyte factor 1/fetal antigen 1 (dlk) in four well-defined experimental rat models of liver injury and regeneration.

View Article and Find Full Text PDF

To evaluate the effect of acetaminophen pretreatment and growth factors on acetaminophen hepatotoxicity in cultured rat hepatocytes, rat hepatocytes in primary culture were exposed to acetaminophen 8 mM after pretreatment with either acetaminophen 1 mM, treatment with growth factors (EGF and HGF), or no treatment. Growth response was measured by changes in DNA, [3H]thymidine incorporation and mRNA of growth related proteins, cell damage by leakage of LDH to the medium and changes in ATP, and protection against toxicity by changes in glutathione, cytochrome p450 and the expression of glutathione-S-transferase and Cyp1A2. Pretreatment with acetaminophen induced growth response, weaker than that of growth factors, but pretreatment and growth factors reduced cell damage equally effectively.

View Article and Find Full Text PDF

The regenerative capacity of mammalian adult liver reflects the ability of a number of cell populations within the hepatic lineage to take action. Limited information is available regarding factors and mechanisms that determine the specific lineage level at which liver cells contribute to liver repair as well as the fate of their progeny in the hostile environment created by liver injury. In the present study, we attempted to identify novel molecules preferentially involved in liver regeneration by recruitment of transit-amplifying, ductular (oval) cell populations.

View Article and Find Full Text PDF

Liver damage activates processes aimed at repairing damage; simultaneously, liver functions required for survival must be maintained. The expression of genes responsible for both in rat models of lethal (lipopolysaccharide, 90% hepatectomy, and d-galactosamine) and nonlethal (turpentine, 70% hepatectomy, and acetaminophen) liver damage and stress was measured at 3, 6, 12, and 24 h after the intervention and quantitated as the area between the control curves and the test curves (AUC). The expression of genes for cell division and remodeling was upregulated most in the lethal models.

View Article and Find Full Text PDF