Publications by authors named "Niels Thorup"

Reactions between solid zinc oxide and molten sodium or potassium pyrosulfates at 500 degrees C are shown by Raman spectroscopy to be 1:1 reactions leading to solutions. By lowering the temperature of the solution melts, colorless crystals form. Raman spectra of the crystals are given and tentatively assigned.

View Article and Find Full Text PDF

[reaction: see text] The organometallic intermediate obtained from halogen-metal exchanges of 4-iodo-6-phenylthieno[2,3-d]pyrimidine under Barbier-type conditions was reacted with aldehydes to form the corresponding alcohols in moderate yields. The reaction involving an organolithium intermediate proceeded only at low temperature, whereas the reaction involving a magnesium ate intermediate also proceeded at room temperature. A crystal structure confirms that the expected constitutional alcohol isomer is formed, where no migration has taken place.

View Article and Find Full Text PDF

[reaction: see text] A novel type of tetrathiafulvalene-cage 4 containing three monopyrrolo-tetrathiafulvalene units has been prepared employing a general and efficient synthetic approach. X-ray crystal structure analysis revealed that the cage is able to accommodate solvent molecules within a cavity in the solid state.

View Article and Find Full Text PDF

Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10).

View Article and Find Full Text PDF

A general and efficient four-step synthesis of a tetrathiafulvalene-belt 6, starting from the monopyrrolo-tetrathiafulvalene building block 1, is described, together with its 7,7,8,8-tetracyano-p-quinodimethane charge transfer complex. The complexation of the electron acceptor 7,7,8,8-tetracyano-p-quinodimethane by the tetrathiafulvalene-belt 6 was investigated both in solution and in the solid state. [reaction: see text]

View Article and Find Full Text PDF

5-Azido-3-benzyl-4-formyl-1-phenylpyrazoles 1a-c extrude dinitrogen upon heating in toluene to give the corresponding nitrenes, which immediately rearrange via a new ring-opening ring-closure reaction to produce an equimolar mixture of 4-cyano-2-phenyl-3-phenylazofurans 2a-c and 3-benzyl-4-cyano-1-phenylpyrazoles 3a-c. The formation of the 4-cyano-2-phenyl-3-phenylazofurans 2a-c is the first example in the pyrazole series of a nitrene rearrangement, in which the parent heterocyclic system of the product differs from that of the starting material. The isolation of equimolar amounts of the two products points to the fact that their formation occurs by two mechanistically interconnected pathways, between which the exchange of a redox equivalent takes place.

View Article and Find Full Text PDF

The latest member of the cyclophane family, the macrotricyclic tetrathiafulvalene (TTF) "belt", is now available. A general synthetic strategy for the construction of tetraconnected belt-type TTFs (shown schematically) has been developed, made possible by the use of a TTF with two different protecting groups. In the solid-state structure of one of the three TTF-belts prepared two chloroform molecules reside inside the spacious cavity.

View Article and Find Full Text PDF