The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
November 2015
The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker.
View Article and Find Full Text PDFA novel heterogeneous dirhodium catalyst has been synthesized. This stable catalyst is constructed from dirhodium acetate dimer (Rh2(OAc)4) units, which are covalently linked to amine- and carboxyl-bifunctionalized mesoporous silica (SBA-15-NH2-COOH). It shows good efficiency in catalyzing the cyclopropanation reaction of styrene and ethyl diazoacetate (EDA) forming cis- and trans-1-ethoxycarbonyl-2-phenylcyclopropane.
View Article and Find Full Text PDFIn recent years, solid-state NMR spectroscopy has evolved into an important characterization tool for the study of solid catalysts and chemical processes on their surface. This interest is mainly triggered by the need of environmentally benign organic transformations ("green chemistry"), which has resulted in a large number of new catalytically active hybrid materials, which are organized on the meso- and nanoscale. Typical examples of these catalysts are supported homogeneous transition metal catalysts or transition metal nanoparticles (MNPs).
View Article and Find Full Text PDF