Publications by authors named "Niels Reuter"

The human striatum is essential for both low- and high-level functions and has been implicated in the pathophysiology of various prevalent disorders, including Parkinson's disease (PD) and schizophrenia (SCZ). It is known to consist of structurally and functionally divergent subdivisions. However, previous parcellations are based on a single neuroimaging modality, leaving the extent of the multi-modal organization of the striatum unknown.

View Article and Find Full Text PDF

"Locked-in" patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments.

View Article and Find Full Text PDF

Regional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it difficult to compare and interpret the results.

View Article and Find Full Text PDF

Higher cognition may require the globally coordinated integration of specialized brain regions into functional networks. A collection of structural cortical hubs-referred to as the rich club-has been hypothesized to support task-specific functional integration. In the present paper, we use a whole-cortex model to estimate directed interactions between 68 cortical regions from functional magnetic resonance imaging activity for four different tasks (reflecting different cognitive domains) and resting state.

View Article and Find Full Text PDF

Cognition is hypothesized to require the globally coordinated, functionally relevant integration of otherwise segregated information processing carried out by specialized brain regions. Studies of the macroscopic connectome as well as recent neuroimaging and neuromodeling research have suggested a densely connected collective of cortical hubs, termed the rich club, to provide a central workspace for such integration. In order for rich club regions to fulfill this role they must dispose of a dynamic mechanism by which they can actively shape networks of brain regions whose information processing needs to be integrated.

View Article and Find Full Text PDF