Publications by authors named "Niels J Korsgaard"

Article Synopsis
  • * In September 2023, researchers detected a significant seismic signal from East Greenland that corresponded to a rock-ice avalanche leading to a tsunami in Dickson Fjord.
  • * The study reveals that the tsunami transformed into a 7-meter-high long-duration seiche, demonstrating the interplay between glacial melting and geological hazards, emphasizing the dangerous effects of climate change on these environments.
View Article and Find Full Text PDF

On December 15th 1952, at approximately 14:00 local time a mass of 5.9 × 10 m of permafrozen talus deposits failed in a landslide close to the Niiortuut mountain on the south coast of the Nuussuaq peninsula, central West Greenland. Between 1.

View Article and Find Full Text PDF

The Greenland ice sheet has been one of the largest sources of sea-level rise since the early 2000s. However, basal melt has not been included explicitly in assessments of ice-sheet mass loss so far. Here, we present the first estimate of the total and regional basal melt produced by the ice sheet and the recent change in basal melt through time.

View Article and Find Full Text PDF

The Greenland Ice Sheet is the largest land ice contributor to sea level rise. This will continue in the future but at an uncertain rate and observational estimates are limited to the last few decades. Understanding the long-term glacier response to external forcing is key to improving projections.

View Article and Find Full Text PDF

Sediment cores from Kløverbladvatna, a threshold lake in Wahlenbergfjorden, Nordaustlandet, Svalbard were used to reconstruct Holocene glacier fluctuations. Meltwater from Etonbreen spills over a threshold to the lake, only when the glacier is significantly larger than at present. Lithological logging, loss-on-ignition, ITRAX scanning and radiocarbon dating of the cores show that Kløverbladvatna became isolated from Wahlenbergfjorden c.

View Article and Find Full Text PDF

The transition from the last ice age to the present-day interglacial was interrupted by the Younger Dryas (YD) cold period. While many studies exist on this climate event, only few include high-resolution marine records that span the YD. In order to better understand the interactions between ocean, atmosphere and ice sheet stability during the YD, more high-resolution proxy records from the Arctic, located proximal to ice sheet outlet glaciers, are required.

View Article and Find Full Text PDF

Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987.

View Article and Find Full Text PDF

The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

View Article and Find Full Text PDF

Global warming is predicted to have a profound impact on the Greenland Ice Sheet and its contribution to global sea-level rise. Recent mass loss in the northwest of Greenland has been substantial. Using aerial photographs, we produced digital elevation models and extended the time record of recent observed marginal dynamic thinning back to the mid-1980s.

View Article and Find Full Text PDF

We present a sea-ice record from northern Greenland covering the past 10,000 years. Multiyear sea ice reached a minimum between ~8500 and 6000 years ago, when the limit of year-round sea ice at the coast of Greenland was located ~1000 kilometers to the north of its present position. The subsequent increase in multiyear sea ice culminated during the past 2500 years and is linked to an increase in ice export from the western Arctic and higher variability of ice-drift routes.

View Article and Find Full Text PDF