Publications by authors named "Niels J Hauwert"

The site specific attachment of the reactive TMTHSI-click handle to the N-terminus of peptides and proteins is described. The resulting molecular constructs can be used in strain-promoted azide alkyne cycloaddition (SPAAC) for reaction with azide containing proteins , antibodies, peptides, nanoparticles, fluorescent dyes, chelators for radioactive isotopes and SPR-chips .

View Article and Find Full Text PDF

In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors β-AR and β-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced - isomerization (>94%) and good thermal stability (  > 10 days) of the resulting -isomer in an aqueous buffer. Upon illumination with 360-nm light to PSS , large differences in binding affinities were observed for photoswitchable compounds at β-AR as well as β-AR.

View Article and Find Full Text PDF

We report a detailed structure-activity relationship for the scaffold of VUF16216, a compound we have previously communicated as a small-molecule efficacy photoswitch for the peptidergic chemokine GPCR CXCR3. A series of photoswitchable azobenzene ligands was prepared through various synthetic strategies and multistep syntheses. Photochemical and pharmacological properties were used to guide the design iterations.

View Article and Find Full Text PDF

Spatiotemporal control over biochemical signaling processes involving G protein-coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed sixteen photoswitchable ligands for the human histamine H receptor (hH R). Upon illumination, key compound 65 decreases its affinity for the hH R by 8.

View Article and Find Full Text PDF

Noninvasive methods to modulate G protein-coupled receptors (GPCRs) with temporal and spatial precision are in great demand. Photopharmacology uses photons to control in situ the biological properties of photoswitchable small-molecule ligands, which bodes well for chemical biological precision approaches. Integrating the light-switchable configurational properties of an azobenzene into the ligand core, we developed a bidirectional antagonist toolbox for an archetypical family A GPCR, the histamine H receptor (HR).

View Article and Find Full Text PDF