Publications by authors named "Niels F W Ligterink"

The investigation of chemical composition on planetary bodies without significant sample processing is of importance for nearly every mission aimed at robotic exploration. Moreover, it is a necessary tool to achieve the longstanding goal of finding evidence of life beyond Earth, for example, possibly preserved microbial remains within martian sediments. Our Laser Ablation Ionization Mass Spectrometer (LIMS) is a compact time-of-flight mass spectrometer intended to investigate the elemental, isotope, and molecular composition of a wide range of solid samples, including e.

View Article and Find Full Text PDF

In this contribution, we present results of non-linear dimensionality reduction and classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-of-flight mass spectrometer developed for space applications. We discuss the data generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS mass spectra.

View Article and Find Full Text PDF

Rationale: Femtosecond (fs) laser ablation ion sources have allowed for improved measurement capabilities and figures of merit of laser ablation based spectroscopic and mass spectrometric measurement techniques. However, in comparison to longer pulse laser systems, the ablation plume from fs lasers is observed to be colder, which favors the formation of polyatomic species. Such species can limit the analytical capabilities of a system due to isobaric interferences.

View Article and Find Full Text PDF

Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time-of-flight mass spectrometer (LIMS) that is designed for in situ planetary research.

View Article and Find Full Text PDF

For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals.

View Article and Find Full Text PDF

Rationale: Laser ablation combined with mass spectrometry forms a promising tool for chemical depth profiling of solids. At irradiations near the ablation threshold, high depth resolutions are achieved. However, at these conditions, a large fraction of ablated species is neutral and therefore invisible to the instrument.

View Article and Find Full Text PDF