Objectives: Adequate analytical quality of reported results is primarily ensured by performing internal quality control (iQC). Currently, several different iQC practices are in use. As a prelude to the revision of a Dutch guidance document on analytical QC, a questionnaire was sent out to gain insights in the applied practices and the need for guidance.
View Article and Find Full Text PDFLiquid cell transmission electron microscopy is a powerful tool for visualizing nanoparticle (NP) assemblies in liquid environments with nanometer resolution. However, it remains a challenge to control the NP concentration in the high aspect ratio liquid enclosure where the diffusion of dispersed NPs is affected by the exposed surface of the liquid cell walls. Here, we introduce a semi-empirical model based on the 1D diffusion equation, to predict the NP loading time as they pass through the nanochannel into the imaging volume of the liquid cell.
View Article and Find Full Text PDFMATLAB scripts were designed to compute the sample-limited spatial resolution in transmission electron microscopy (TEM) and scanning TEM (STEM) as a function of different microscopy parameters including the electron dose eD, sample geometry, and materials parameters. The scripts can be used to select the optimum microscopy modality and optimize the experimental conditions to achieve the best possible resolution considering the limitations set by both the electron optics and the examined sample. The resolution can be computed as function of the objective opening semi-angle α for TEM and detector opening semi-angle β for STEM.
View Article and Find Full Text PDFObserving processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose D using scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFSyntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. We report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones.
View Article and Find Full Text PDFSelf-assembly of nanoscale structures at liquid-solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids.
View Article and Find Full Text PDFCurrently, breast cancer patients are classified uniquely according to the expression level of hormone receptors, and human epidermal growth factor receptor 2 (HER2). This coarse classification is insufficient to capture the phenotypic complexity and heterogeneity of the disease. A methodology was developed for absolute quantification of receptor surface density , and molecular interaction (dimerization), as well as the associated heterogeneities, of HER2 and its family member, the epidermal growth factor receptor (EGFR) in the plasma membrane of HER2 overexpressing breast cancer cells.
View Article and Find Full Text PDFScanning transmission electron microscopy (STEM) provides structural analysis with sub-angstrom resolution. But the pixel-by-pixel scanning process is a limiting factor in acquiring high-speed data. Different strategies have been implemented to increase scanning speeds while at the same time minimizing beam damage via optimizing the scanning strategy.
View Article and Find Full Text PDFThe effect of chromatic aberration (CC) on the spatial resolution in transmission electron microscopy (TEM) was studied in thick specimens in which the sample becomes the limiting factor in the resolution. The sample influences the energy spread of the electron beam, allows only a limited electron dose, and modulates electron scattering events. The experimental set-up consisted of a thin silicon nitride membrane and a silicon wedge containing gold nanoparticles.
View Article and Find Full Text PDFGraphene liquid cells (GLCs) present the thinnest possible sample enclosures for liquid phase electron microscopy. However, the actual presence of liquid within a GLC is not always guaranteed. Of key importance is to reliably test the presence of the liquid, which is most frequently water or saline.
View Article and Find Full Text PDFThe Ca selective channel ORAI1 and endoplasmic reticulum (ER)-resident STIM proteins form the core of the channel complex mediating store operated Ca entry (SOCE). Using liquid phase electron microscopy (LPEM), the distribution of ORAI1 proteins was examined at rest and after SOCE-activation at nanoscale resolution. The analysis of over seven hundred thousand ORAI1 positions revealed a number of ORAI1 channels had formed STIM-independent distinct supra-molecular clusters.
View Article and Find Full Text PDFLiquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 μm.
View Article and Find Full Text PDFThe epidermal growth factor receptor HER2 is overexpressed in 20% of breast cancer cases. HER2 is an orphan receptor that is activated ligand-independently by homodimerization. In addition, HER2 is able to heterodimerize with EGFR, HER3, and HER4.
View Article and Find Full Text PDFQuantum dots exhibit unique properties compared to other fluorophores, such as bright fluorescence and lack of photobleaching, resulting in their widespread utilization as fluorescent protein labels in the life sciences. However, their application is restricted to relative quantifications due to lacking knowledge about the labeling efficiency. We here present a strategy for determining the labeling efficiency of quantum dot labeling of HER2 in overexpressing breast cancer cells.
View Article and Find Full Text PDFA protocol is described for investigating the human epidermal growth factor receptor 2 (HER2) in the intact plasma membrane of breast cancer cells using scanning transmission electron microscopy (STEM). Cells of the mammalian breast cancer cell line SKBR3 were grown on silicon microchips with silicon nitride (SiN) windows. Cells were chemically fixed, and HER2 proteins were labeled with quantum dot nanoparticles (QDs), using a two-step biotin-streptavidin binding protocol.
View Article and Find Full Text PDFEpidermal growth factor receptor 2 (ErbB2) is found overexpressed in several cancers, such as gastric, and breast cancer, and is, therefore, an important therapeutic target. ErbB2 plays a central role in cancer cell invasiveness, and is associated with cytoskeletal reorganization. In order to study the spatial correlation of single ErbB2 proteins and actin filaments, we applied correlative fluorescence microscopy (FM), and scanning transmission electron microscopy (STEM) to image specifically labeled SKBR3 breast cancer cells.
View Article and Find Full Text PDFExcess presence of the human epidermal growth factor receptor 2 (HER2) as well as of the focal adhesion protein complexes are associated with increased proliferation, migratory, and invasive behavior of cancer cells. A cross-regulation between HER2 and integrin signaling pathways has been found, but the exact mechanism remains elusive. Here, we investigated whether HER2 colocalizes with focal adhesion complexes on breast cancer cells overexpressing HER2.
View Article and Find Full Text PDFInnovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology.
View Article and Find Full Text PDFORAI1 proteins form highly selective Ca channels in the plasma membrane. Crystallographic data point towards a hexameric stoichiometry of ORAI1 channels, whereas optical methods postulated ORAI1 channels to reside as dimers at rest, and other data suggests that they have a tetrameric configuration. Here, liquid-phase scanning transmission electron microscopy (STEM) and quantum dot (QD) labeling was utilized to study the conformation of ORAI1 proteins at rest.
View Article and Find Full Text PDFAbout 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3.
View Article and Find Full Text PDFBackground: HER2 is considered as one of the most important, predictive biomarkers in oncology. The diagnosis of HER2 positive cancer types such as breast- and gastric cancer is usually based on immunohistochemical HER2 staining of tumour tissue. However, the current immunohistochemical methods do not provide localized information about HER2's functional state.
View Article and Find Full Text PDFLiquid-phase electron microscopy (LPEM) is capable of imaging nanostructures and processes in a liquid environment. The spatial resolution achieved with LPEM critically depends on the thickness of the liquid layer surrounding the object of interest. An excessively thick liquid results in broadening of the electron beam and a high background signal that decreases the resolution and contrast of the object in an image.
View Article and Find Full Text PDFJ Phys D Appl Phys
November 2018
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions.
View Article and Find Full Text PDF