Publications by authors named "Niek Stevenson"

Joint modeling of decisions and neural activation poses the potential to provide significant advances in linking brain and behavior. However, methods of joint modeling have been limited by difficulties in estimation, often due to high dimensionality and simultaneous estimation challenges. In the current article, we propose a method of model estimation that draws on state-of-the-art Bayesian hierarchical modeling techniques and uses factor analysis as a means of dimensionality reduction and inference at the group level.

View Article and Find Full Text PDF

Decision-making behavior is often understood using the framework of evidence accumulation models (EAMs). Nowadays, EAMs are applied to various domains of decision-making with the underlying assumption that the latent cognitive constructs proposed by EAMs are consistent across these domains. In this study, we investigate both the extent to which the parameters of EAMs are related between four different decision-making domains and across different time points.

View Article and Find Full Text PDF

Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced Parkinson's disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target regions heavily rely on the insights gained from rodent and primate models.

View Article and Find Full Text PDF

Attitudes (or opinions, preferences, biases, stereotypes) can be considered bindings of the perceptual features of the attitudes' object to affective codes with positive or negative connotations, which effectively renders them "event files" in terms of the Theory of Event Coding. We tested a particularly interesting implication of this theoretical account: that affective codes might "migrate" from one event file to another (i.e.

View Article and Find Full Text PDF

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM's limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs.

View Article and Find Full Text PDF

Learning and decision-making are interactive processes, yet cognitive modeling of error-driven learning and decision-making have largely evolved separately. Recently, evidence accumulation models (EAMs) of decision-making and reinforcement learning (RL) models of error-driven learning have been combined into joint RL-EAMs that can in principle address these interactions. However, we show that the most commonly used combination, based on the diffusion decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response times observed during reinforcement learning.

View Article and Find Full Text PDF