Publications by authors named "Niehus H"

Introduction: CMML is a rare neoplasm with overlapping myelodysplastic and myeloproliferative features whose only potential cure is allogeneic hematopoietic cell transplantation (allo-HCT).

Methods: This retrospective study examined 27 CMML patients with high-risk clinical features who underwent first allo-HCT at our institution between 2004 and 2022.

Results: Nineteen patients were diagnosed with the proliferative subtype (CMML-MPN) and 8 with the dysplastic subtype (CMML-MDS).

View Article and Find Full Text PDF

Background: Because physician practices contribute to national healthcare expenditures, initiatives aimed at educating physicians about high-value cost-conscious care (HVCCC) are important. Prior studies suggest that the training environment influences physician attitudes and behaviors towards HVCCC.

Objective: To explore the relationship between medical student experiences and HVCCC attitudes.

View Article and Find Full Text PDF

Complementary but independent medium-energy and low-energy ion scattering studies of the (0001) surfaces of V(2)O(3) films grown on Pd(111), Au(111) and Cu(3)Au(100) reveal a reconstructed full O(3)-layer termination creating a VO(2) surface trilayer. This structure is fully consistent with previous calculations based on thermodynamic equilibrium at the surface during growth, but contrasts with previous suggestions that the surface termination comprises a complete monolayer of vanadyl (V=O) species.

View Article and Find Full Text PDF

To learn about the interaction between drug agents and nanoparticular carrier systems, the physical analytical methods of parelectric, electron spin and fluorescence spectroscopy have proven helpful tools to yield descriptive models of such complex systems. For a deeper understanding of drug absorption from body surfaces and drug distribution into the tissues, however, the lack of knowledge about the interaction between such agents and membranes on different levels is a severe drawback. This gap can be closed by the application of atomic force microscopy at normal temperatures and under the admission of liquid surroundings.

View Article and Find Full Text PDF

An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out.

View Article and Find Full Text PDF

All relevant steps of discontinuous thin film growth of para-hexaphenylene on muscovite mica (0 0 1) from wetting layer over small and large clusters to nanofibers are observed and investigated in detail by a combined polarized fluorescence and atomic force microscopy study. From a variation of film thickness and surface temperature, we determine effective activation energies for cluster growth of 0.17 eV, for nanofiber length growth of 0.

View Article and Find Full Text PDF

In situ band gap mapping of the V2O5(001) crystal surface revealed a reversible metal-to-insulator transition at 350-400 K, which occurs inhomogeneously across the surface and expands preferentially in the direction of the vanadyl (V=O) double rows. Supported by density functional theory and Monte Carlo simulations, the results are rationalized on the basis of the anisotropic growth of vanadyl-oxygen vacancies and a concomitant oxygen loss driven metal-to-insulator transition at the surface. At elevated temperatures irreversible surface reduction proceeds sequentially as V2O5(001) --> V6O13(001) --> V2O3(0001).

View Article and Find Full Text PDF

The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer.

View Article and Find Full Text PDF

Smooth and defect-rich Ru(0001) surfaces prepared under ultrahigh-vacuum (UHV) conditions have been loaded with oxygen under high-pressure (p View Article and Find Full Text PDF

The influence of ultrathin Au cluster films on the growth of para-hexaphenyl (p-6P) fibres is investigated. Whereas p-6P at elevated temperatures forms long, mutually parallel fibres on plain mica, these fibres become shorter but taller on Au covered mica, up to a Au film thickness of approximately 8 nm. The degree to which fibres are mutually parallel decreases with increasing Au thickness.

View Article and Find Full Text PDF

The answer of a high-frequency electromagnetic wave to a sample as termination of an open-ended coaxial line gives the mobility and the density of permanent electric dipole moments in the substance under test. As long as these dipoles are attached to carrier molecules of well defined masses, both parameters can be extracted from the reflected wave in a quick manner giving unambiguous results. The corresponding algorithm has been applied to solid lipid nanoparticles with glucocorticoid molecules attached to or incorporated in the carrier molecules.

View Article and Find Full Text PDF

A smooth Ru(0001) surface prepared under ultra-high vacuum conditions has been loaded with oxygen under high-pressure (p approximately 1 bar) and low-temperature (T < 600 K) conditions. Oxygen phases created in this way have been investigated by means of thermal desorption spectroscopy, low-energy electron diffraction, and ultraviolet photoelectron spectroscopy. The exposure procedures applied lead to oxygen incorporation into the subsurface region without creation of RuO2 domains.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLN, Lipopearls) are nanoparticles made from solid lipids by high pressure homogenization. Incorporation of chemically labile active ingredients into the solid lipid matrix protects against chemical degradation, which is shown for vitamin E. The SLN are physically stable in aqueous dispersions and also after incorporation into a dermal cream as proven by photon correlation spectroscopy and differential scanning calorimetry.

View Article and Find Full Text PDF

Purpose: Assessment of lower size limit of Sedimentation Field-Flow Fractionation (SedFFF), specifically to evaluate if the method is suitable to determine the size and size distribution of 20 nm colloidal gold particles with high resolution.

Methods: Sedimentation Field-Flow Fractionation was used to determine the size of the colloidal particles. Due to the high density of gold it was possible to extend the lower size limit of SedFFF well below 20 nm.

View Article and Find Full Text PDF

Animal cells release traces of material onto glass or silicon surfaces during adhesion and migration. This little studied phenomenon is a widespread and normal concomitant of cell migration. The paper introduces the study of such material.

View Article and Find Full Text PDF

Purpose: Solid Lipid Nanoparticles (SLN) are an alternative carrier system for the controlled delivery of drugs. In most cases prednisolone loaded SLN show a biphasic release behaviour. The initial phase is characterised by a fast drug release, which is followed by a sustained drug release over several weeks.

View Article and Find Full Text PDF