Publications by authors named "Niefeng Sun"

Neuromorphic computing holds immense promise for developing highly efficient computational approaches. Memristor-based artificial neurons, known for due to their straightforward structure, high energy efficiency, and superior scalability, which enable them to successfully mimic biological neurons with electrical devices. However, the reliability of memristors has always been a major obstacle in neuromorphic computing.

View Article and Find Full Text PDF

A cost-effective method to achieve a 2-3 µm wavelength light source on silicon represents a major challenge. In this study, we have developed a novel approach that combines an epitaxial growth and the ion-slicing technique. A 2.

View Article and Find Full Text PDF

2D van der Waals (vdW) semiconductors hold great potentials for more-than-Moore field-effect transistors (FETs), and the efficient utilization of their theoretical performance requires compatible high-k dielectrics to guarantee the high gate coupling efficiency. The deposition of traditional high-k dielectric oxide films on 2D materials usually generates interface concerns, thereby causing the carrier scattering and degeneration of device performance. Here, utilizing a space-confined epitaxy growth approach, the authors successfully obtained air-stable ultrathin indium phosphorus sulfide (In P S ) nanosheets, the thickness of which can be scaled down to monolayer limit (≈0.

View Article and Find Full Text PDF

CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons.

View Article and Find Full Text PDF