Publications by authors named "Niedzialkowski P"

Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated.

View Article and Find Full Text PDF

3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation.

View Article and Find Full Text PDF

This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection.

View Article and Find Full Text PDF

This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C.

View Article and Find Full Text PDF

This manuscript presents a novel approach to address the challenges of electrode fouling and highly complex electrode nanoarchitecture, which are primary concerns for biosensors operating in real environments. The proposed approach utilizes multiparametric impedance discriminant analysis (MIDA) to obtain a fingerprint of the macromolecular interactions on flat glassy carbon surfaces, achieved through self-organized, drop-cast, receptor-functionalized Au nanocube (AuNC) patterns. Real-time monitoring is combined with singular value decomposition and partial least squares discriminant analysis, which enables selective identification of the analyte from raw impedance data, without the use of electric equivalent circuits.

View Article and Find Full Text PDF

Two macrocyclic chemosensors with anthraquinone signaling unit incorporated into ionophore system (via positions 1 and 8) have been synthesized and subsequently their physicochemical properties became the subject of our extensive research. First ligand, labeled in the paper as AQ-Ncrown is characterized by a cyclic structure of a crown ether, while second one AQ-Ncrypt includes an additional ethoxy bridge, which ensures the bicyclic character of a cryptand. The studied macrocycles possess both oxygen and nitrogen heteroatoms in the ionophore cavity.

View Article and Find Full Text PDF

The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and (200) crystallographic planes.

View Article and Find Full Text PDF

Photocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, KVO·HO nanobelts and KVO microplatelets were synthesized and investigated as photocatalysts.

View Article and Find Full Text PDF

This work describes the synthesis and characterization of new core-shell material designed for Förster resonance energy transfer (FRET) studies. Synthesis, structural and optical properties of core-shell nanostructures with a large number of two kinds of fluorophores bound to the shell are presented. As fluorophores, strongly fluorescent rhodamine 101 and rhodamine 110 chloride were selected.

View Article and Find Full Text PDF

Over the past few decades, nanoparticles of iron oxide FeO (magnetite) gained significant attention in both basic studies and many practical applications. Their unique properties such as superparamagnetism, low toxicity, synthesis simplicity, high surface area to volume ratio, simple separation methodology by an external magnetic field, and renewability are the reasons for their successful utilisation in environmental remediation, biomedical, and agricultural applications. Moreover, the magnetite surface modification enables the successful binding of various analytes.

View Article and Find Full Text PDF

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN] (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser-target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN] nanoparticles with an average thickness of 135 nm on Si and/or glass substrates.

View Article and Find Full Text PDF

Contemporary prosthetic materials are characterized by highly specific preparation for a given application. This means that at the stage of their creation, not only their function is taken into account, but also the long-term behavior of this material during use. In the case of telescopic crowns, an important factor not yet appearing in the research is the aspect of adhesion force and its dependence on the type of biomaterial, but also the properties of human saliva.

View Article and Find Full Text PDF

This work describes the modification of a gold electrode with the BMS-8 compound that interacts with the Programmed Death-Ligand 1 (PD-L1), an immune checkpoint protein. The results show that we can confirm the presence of the sPD-L1 in the concentration range of 10 to 10 M using electrochemical impedance spectroscopy (EIS) with a limit of detection (LOD) of 1.87 × 10 M for PD-L1 (S/N = 3.

View Article and Find Full Text PDF

The present work describes synthesis, characterization, and use of a new dansyl-labelled Ag@SiO nanocomposite as an element of a new plasmonic platform to enhance the fluorescence intensity. Keeping in mind that typical surface plasmon resonance (SPR) characteristics of silver nanoparticles coincide well enough with the absorption of dansyl molecules, we used them to build the core of the nanocomposite. Moreover, we utilized 10 nm amino-functionalized silica shell as a separator between silver nanoparticles and the dansyl dye to prevent the dye-to-metal energy transfer.

View Article and Find Full Text PDF

In this paper, we described the synthesis procedure of TiO@SiO core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment of Fmoc-glycine (Fmoc-Gly-OH) at the surface of the core-shell structure was performed to determine the amount of active amino groups on the basis of the amount of Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the modification effectiveness.

View Article and Find Full Text PDF

In this work, we present a direct electrochemical biofunctionalization of an indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. The functionalization using a biotin derivative was performed by cyclic voltammetry in a 10 mM biotin hydrazide solution. All stages of the experiment were simultaneously verified with optical and electrochemical techniques.

View Article and Find Full Text PDF

The paper demonstrates the potential of photoacoustics for the identification of the mechanisms underlying drug transport through tissue-mimicking systems. Photoacoustic experiments were performed for a model transdermal delivery system, consisting of drug dithranol (in pharmaceutical form) and dodecanol-collodion (DDC) membrane. The spectroscopic data revealed a single-path photodegradation of dithranol in Vaseline (dithranol → danthrone, characterized by the 1st order decay rate of (7.

View Article and Find Full Text PDF

The selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how different dihydroxybenzene isomers interact with aluminum alloy 5754 surface, reducing its corrosion rate in bicarbonate buffer (pH = 11).

View Article and Find Full Text PDF

Background: The 6-min walk test (6MWT) encompasses potential and untapped information related to exercise capacity. However, this test does not yield any information about gait pattern. Recently, we used a ventilatory polygraph to reveal respiratory adaptation during the 6MWT with subjects having high or low body mass index (BMI).

View Article and Find Full Text PDF

Six novel amino acid chromophores were synthesized and their spectroscopic, acid-base, and electrochemical properties are discussed in this work. In studied compounds, selected amino acid residues (l-Aspartic acid, l-Glutamic acid, l-Glutamine, l-Histidine, l-Lysine, l-Arginine) are attached to the 1-(piperazine) 9,10-anthraquinone skeleton via the amide bond between the carboxyl group of amino acid and nitrogen atom of the piperazine ring. All derivatives have been characterized using a variety of spectroscopic techniques (mass spectrometry, 1HNMR, UV-Vis, IR spectroscopy), acid-base (electrochemical and UV-Vis) titrations, and cyclic voltammetry methods.

View Article and Find Full Text PDF

Two different type of electrodes, boron-doped diamond electrode (BDD) and boron-doped carbon nanowalls (B:CNW) electrode, were used for the electrochemical determination of paracetamol using the cyclic voltammetry and the differential pulse voltammetry in phosphate buffered saline, pH = 7.0. The main advantage of these electrodes is their utilization without any additional modification of the electrode surface.

View Article and Find Full Text PDF

In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers.

View Article and Find Full Text PDF

According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year.

View Article and Find Full Text PDF

We aim to evaluate thoracic respiratory inductive plethysmography (RIP) in high body mass index (BMI) subjects with a pneumotachometer (PT) as a reference. We simultaneously evaluated spontaneous breathing by RIP and PT in 10 low and 10 high BMI subjects at rest and in moderate exercise. We then recorded RIP amplitude with different excursions mimicking respiratory thoracic deformation, with different sizes of RIP belts surrounding cylinders of different perimeters with or without deformable foam simulating adipose tissue.

View Article and Find Full Text PDF

In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)] redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H/CH/BH and N. Growth results in sharp-edged, flat, and long CNWs rich in sp as well as sp hybridized phases.

View Article and Find Full Text PDF