Introduction: Atrial late gadolinium enhancement (Atrial-LGE) and electroanatomic voltage mapping (Atrial-EAVM) quantify the anatomical and functional extent of atrial cardiomyopathy. We aimed to explore the relationships between, and outcomes from, these modalities in patients with atrial fibrillation undergoing ablation.
Methods: Patients undergoing first-time ablation had disease severities quantified using both Atrial-LGE and Atrial-EAVM.
Expert Rev Cardiovasc Ther
December 2024
Introduction: Cardiac Resynchronization Therapy (CRT) is an effective treatment for heart failure (HF) in approximately two-thirds of recipients, with a third remaining CRT 'non-responders.' There is an increasing body of evidence exploring the reasons behind non-response, as well as ways to preempt or counteract it.
Areas Covered: This review will examine the most recent evidence regarding optimizing outcomes from CRT, as well as explore whether traditional CRT indeed remains the best first-line therapy for electrical resynchronization in HF.
Background: Hydroquinidine reduces arrhythmic events in patients with Brugada syndrome (BrS). The mechanism by which it exerts antiarrhythmic benefit and its electrophysiological effects on BrS substrate remain incompletely understood.
Objective: This study aimed to determine the effect of hydroquinidine on ventricular depolarization and repolarization in patients with BrS in vivo.
Background: Leadless cardiac resynchronization therapy (CRT) is an emerging heart failure treatment. An implanted electrode delivers lateral or septal endocardial left ventricular (LV) pacing (LVP) upon detection of a right ventricular (RV) pacing stimulus from a coimplanted device, thus generating biventricular pacing (BiVP). Electrical efficacy data regarding this therapy, particularly leadless LV septal pacing (LVSP) for potential conduction system capture, are limited.
View Article and Find Full Text PDFIn silico clinical trials (ISCTs) are an emerging method in modeling and simulation where medical interventions are evaluated using computational models of patients. ISCTs have the potential to provide cost-effective, time-efficient, and ethically favorable alternatives for evaluating the safety and effectiveness of medical devices. However, ensuring the credibility of ISCT results is a significant challenge.
View Article and Find Full Text PDFIntroduction: Atrial remodelling (AR) is the persistent change in atrial structure and/or function and contributes to the initiation, maintenance and progression of atrial fibrillation (AF) in a reciprocal self-perpetuating relationship. Left atrial (LA) size, geometry, fibrosis, wall thickness (LAWT) and ejection fraction (LAEF) have all been shown to vary with pathological atrial remodelling. The association of these global remodelling markers with each other for differentiating structural phenotypes in AF is not well investigated.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF) and ventricular fibrillation (VF) episodes exhibit varying durations, with some spontaneously ending quickly while others persist. A quantitative framework to explain episode durations remains elusive. We hypothesized that observable self-terminating AF and VF episode lengths, whereby durations are known, would conform with a power law based on the ratio of system size and correlation length ([Formula: see text].
View Article and Find Full Text PDFBackground: Studies have reported that female sex predicts superior cardiac resynchronization therapy (CRT) response. One theory is that this association is related to smaller female heart size, thus increased relative dyssynchrony at a given QRS duration (QRSd). Our objective was to investigate the mechanisms of sex-specific CRT response relating to heart size, relative dyssynchrony, cardiomyopathy type, QRS morphology, and other patient characteristics.
View Article and Find Full Text PDFThe length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA.
View Article and Find Full Text PDFAims: Standard methods of heart chamber volume estimation in cardiovascular magnetic resonance (CMR) typically utilize simple geometric formulae based on a limited number of slices. We aimed to evaluate whether an automated deep learning neural network prediction of 3D anatomy of all four chambers would show stronger associations with cardiovascular risk factors and disease than standard volume estimation methods in the UK Biobank.
Methods And Results: A deep learning network was adapted to predict 3D segmentations of left and right ventricles (LV, RV) and atria (LA, RA) at ∼1 mm isotropic resolution from CMR short- and long-axis 2D segmentations obtained from a fully automated machine learning pipeline in 4723 individuals with cardiovascular disease (CVD) and 5733 without in the UK Biobank.
Purpose: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan.
Methods: There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance.
Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
September 2024
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers.
View Article and Find Full Text PDFPurpose To perform a qualitative and quantitative evaluation of the novel image-navigated (iNAV) 3D late gadolinium enhancement (LGE) cardiac MRI imaging strategy in comparison with the conventional diaphragm-navigated (dNAV) 3D LGE cardiac MRI strategy for the assessment of left atrial fibrosis in atrial fibrillation (AF). Materials and Methods In this prospective study conducted between April and September 2022, 26 consecutive participants with AF (mean age, 61 ± 11 years; 19 male) underwent both iNAV and dNAV 3D LGE cardiac MRI, with equivalent spatial resolution and timing in the cardiac cycle. Participants were randomized in the acquisition order of iNAV and dNAV.
View Article and Find Full Text PDFWe are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.
View Article and Find Full Text PDFCardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation.
View Article and Find Full Text PDFBackground: Machine learning (ML) models have been proposed to predict risk related to transvenous lead extraction (TLE).
Objective: The purpose of this study was to test whether integrating imaging data into an existing ML model increases its ability to predict major adverse events (MAEs; procedure-related major complications and procedure-related deaths) and lengthy procedures (≥100 minutes).
Methods: We hypothesized certain features-(1) lead angulation, (2) coil percentage inside the superior vena cava (SVC), and (3) number of overlapping leads in the SVC-detected from a pre-TLE plain anteroposterior chest radiograph (CXR) would improve prediction of MAE and long procedural times.
Background: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS.
View Article and Find Full Text PDFComputer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers.
View Article and Find Full Text PDF