Micrographs of multiple nuclear graphite grades were captured using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), complementing the data contained in the related manuscript, "A multi-technique image library of nuclear graphite microstructures of historical and modern grades." The SEM micrographs show the differences among filler particles, binder, and thermal cracks contained in nuclear graphite. This library of microstructures serves as a baseline of as-received material and enables understanding the phases and differences between nuclear grades.
View Article and Find Full Text PDFThis manuscript provides optical microscopy, scanning electron microscopy, and transmission electron microscopy micrographs that show the microstructure of three superfine nuclear graphite grades IG-110, 2114 and ETU-10. This collection of microstructural data showcases the microstructure of these materials and helps to differentiate the most important features or phases of these graphite grades. In particular, the microstructural data illustrate the filler and binder morphology of these grades.
View Article and Find Full Text PDFThis manuscript provides raw nitrogen gas adsorption data, images and videos obtained from a technique that combines Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) known as FIB-SEM tomography and Transmission Electron Microscopy (TEM) micrographs. This collection of data is useful for characterization of the effects of high fluence neutron irradiation in nuclear graphite as described in the associated manuscript, "Mesopores development in superfine grain graphite neutron-irradiated at high fluence" (Contescu et al., 2019).
View Article and Find Full Text PDFCrown ethers are at their most basic level rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted attention for their ability to selectively incorporate various atoms or molecules within the cavity formed by the ring. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity.
View Article and Find Full Text PDFQuasielastic neutron scattering of H(2) and D(2) in the same nanoporous carbon at 10-40 K demonstrates extreme quantum sieving, with D(2) diffusing up to 76 times faster. D(2) also shows liquidlike diffusion while H(2) exhibits Chudley-Elliott jump diffusion, evidence of their different relationships with the local lattice of adsorption sites due to quantum effects on intermolecular interactions. The onset of diffusion occurs at 22-25 K for H(2) and 10-13 K for D(2).
View Article and Find Full Text PDFA scanning transmission electron microscopy investigation of two nanoporous carbon materials, wood-based ultramicroporous carbon and poly(furfuryl alcohol)-derived carbon, is reported. Atomic-resolution images demonstrate they comprise isotropic, three-dimensional networks of wrinkled one-atom-thick graphene sheets. In each graphene plane, nonhexagonal defects are frequently observed as connected five- and seven-atom rings.
View Article and Find Full Text PDFGraphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes.
View Article and Find Full Text PDFIn-situ small-angle neutron scattering studies of H(2) confined in small pores of polyfurfuryl alcohol-derived activated carbon at room temperature have provided for the first time its phase behavior in equilibrium with external H(2) at pressures up to 200 bar. The data were used to evaluate the density of the adsorbed fluid, which appears to be a function of both pore size and pressure and is comparable to the density of liquid H(2) in narrow nanopores at ∼200 bar. The surface-molecule interactions responsible for densification of H(2) within the pores create internal pressures that exceed the external gas pressure by a factor of up to ∼50, confirming the benefits of adsorptive storage over compressive storage.
View Article and Find Full Text PDF