Publications by authors named "Nidhi Sahu"

Carbon quantum dots derived from mango leaves exhibited red fluorescence. These negatively charged particles underwent coating with the positively charged lipid molecule -[1-(2,3-dioleyloxy)propyl]-,,-trimethylammonium chloride (DOTMA). However, the bioconjugate displayed reduced uptake compared to the standalone mQDs in cancer cells (SUM 159A), and increased uptake in case of non-cancerous (RPE-1) cells.

View Article and Find Full Text PDF

Anaerobic digestion (AD) of kitchen waste (KW) for biogas production is a major challenge to all over the world due to significant compositional variations in KW, such as different types and quantities of spices used for preparing food. Spices may affect the AD process owing to their antimicrobial activity. In this paper, the effect of spices (garlic, red chili, cinnamon, coriander, clove, turmeric, cardamom, black pepper) on AD of KW has been investigated.

View Article and Find Full Text PDF

A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz.

View Article and Find Full Text PDF

An enriched biomass was developed from municipal sewage sludge consisting of three dominant bacteria, representing the genera of Enterobacter, Citrobacter and Streptomyces. The biomass was used in a series of batch experiments in order to determine kinetic constants associated with biomass growth and NOx reduction in aqueous Ferrous EDTA/NTA solutions and Ferric EDTA/NTA solutions using ethanol as organic electron donor. The maximum specific reduction rates of NOx in Ferrous EDTA and Ferrous NTA solutions were 0.

View Article and Find Full Text PDF

Many methods of synthesizing silver nanoparticles (Ag-NPs) by reducing Ag⁺ ions using aqueous/organic extracts of various plants have been reported in the past, but the methods are rather slow. In this investigation, silver nanoparticles were quickly synthesized from aqueous silver nitrate through a simple method using leaf extract of a plant--Cynodon dactylon which served as reducing agent, while sunlight acted as a catalyst. The formation of Ag-NPs was indicated by gradual change in colour and pH and confirmed by ultraviolet--visible spectroscopy.

View Article and Find Full Text PDF