Publications by authors named "Nidhi K Bhatia"

-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel deleterious variant in (c.1595C>A, p.

View Article and Find Full Text PDF

Single molecule Förster Resonance Energy Transfer (smFRET) allows us to measure variation in distances between donor and acceptor fluorophores attached to a protein, providing the conformational landscape of the protein with respect to this specific distance. smFRET can be performed on freely diffusing molecules or on tethered molecules. Here, we describe the tethered method used to study ionotropic glutamate receptors, which allows us to track the changes in FRET as a function of time, thus providing information on the conformations sampled and kinetics of conformational changes in the millisecond to second time scale.

View Article and Find Full Text PDF

N-methyl-D-aspartate (NMDA) receptors mediate synaptic excitatory signaling in the mammalian central nervous system by forming calcium-permeable transmembrane channels upon binding glutamate and coagonist glycine. Ca influx through NMDA receptors leads to channel inactivation through a process mediated by resident calmodulin bound to the intracellular C-terminal segment of the GluN1 subunit of the receptor. Using single-molecule FRET investigations, we show that in the presence of calcium-calmodulin, the distance across the two GluN1 subunits at the entrance of the first transmembrane segment is shorter and the bilobed cleft of the glycine-binding domain in GluN1 is more closed when bound to glycine and glutamate relative to what is observed in the presence of barium-calmodulin.

View Article and Find Full Text PDF

Zn has been shown to have a wide range of modulatory effects on neuronal AMPARs. However, the mechanism of modulation is largely unknown. Here we show that Zn inhibits GluA2(Q) homomeric receptors in an activity- and voltage-dependent manner, indicating a pore block mechanism.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has been associated with the deposition of aggregates of superoxide dismutase 1 (SOD1). Effective therapeutics against SOD1 fibrillation is still an area of active research. Herein, we demonstrate the potential of two naturally occurring flavonoids (quercetin and baicalein) to inhibit fibrillation of wild-type SOD1 with the aid of a series of biophysical techniques.

View Article and Find Full Text PDF
Article Synopsis
  • - Allostery in multidomain proteins can involve both activation and repression, allowing precise regulation of protein functions.
  • - The study utilizes single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics to analyze how glutamate and glycine interact with the NMDA receptor, revealing that binding one agonist impacts the site's conformational flexibility at the other.
  • - Research findings highlight that mutations and cross-linking at the dimer-dimer interface of the agonist-binding domain play a crucial role in mediating negative cooperativity, with the transmembrane segments becoming more loosely packed only when both agonists are bound, ultimately facilitating receptor activation.
View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons. Unfortunately, effective therapeutics against this disease is still not available. Almost 20% of familial ALS (fALS) is suggested to be associated with pathological deposition of superoxide dismutase (SOD1).

View Article and Find Full Text PDF