Publications by authors named "Nidhi Bharti"

Aim: The aim of the study was to compare and evaluate proximal contact tightness and contours using two newer contact-forming systems in Class II composite restorations.

Materials And Methods: After institutional ethical approval and Clinical Trials Registry-India registration, patients were chosen according to the inclusion-exclusion criteria with informed consent. A total of 60 patients were randomly assigned to two groups.

View Article and Find Full Text PDF

To promote agronomic sustainability, extensive research is being carried out globally, investigating biofertilizer development. Recently, it has been realized that some microorganisms used as biofertilizers behave as opportunistic pathogens and belong to the biosafety level 2 (BSL-2) classification. This poses serious risk to the environmental and human health.

View Article and Find Full Text PDF
Article Synopsis
  • * Lemon grass (LG) and clove (CL) oils were found to induce sprouting, while palmarosa (PR) and ajwain (AZ) oils inhibited it at normal room temperatures.
  • * Certain EOs affected sprouting by altering sugar and ethylene levels and gene expression related to tuber sprouting, suggesting that these oils could provide an eco-friendly method to manage potato storage and potentially improve yields.
View Article and Find Full Text PDF

Background: This article highlights the contribution of collagen structure/stability to the bond strength. We hypothesize that induction of cross-linking in dentin collagen fibrils improves dentin collagen stability and thus bond strength with composite also improves.

Aims: The aim of the study was to evaluate the effect of collagen cross-linking agents on the shear bond strength of composite resins.

View Article and Find Full Text PDF

strain SAMM, a biosurfactant producing moderately halophilic marine bacterium was isolated from Indian Arabian coastline sea water. The strain was found to tolerate up to 2.7 M NaCl indicating osmotic stress sustainable physiological systems.

View Article and Find Full Text PDF

Abiotic stresses such as salt and drought represent adverse environmental conditions that significantly damage plant growth and agricultural productivity. In this study, the mechanism of the plant growth-promoting rhizo-bacteria (PGPR)-stimulated tolerance against abiotic stresses has been explored. Results suggest that PGPR strains, Arthrobacter protophormiae (SA3) and Dietzia natronolimnaea (STR1), can facilitate salt stress tolerance in wheat crop, while Bacillus subtilis (LDR2) can provide tolerance against drought stress in wheat.

View Article and Find Full Text PDF

An endophytic species of was isolated from leaf (syn. ) and screened for protease production with five other species of . Data indicated that endophytic AE-6 MCC 2184 and DSM 21948 showed efficient protease production potential and secreted active protease at high salt (10%), temperature (40 °C) and in wide range of pH 8-10.

View Article and Find Full Text PDF

Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the involvement of ABA-signalling cascade, as TaABARE and TaOPR1 were upregulated in PGPR inoculated plants leading to induction of TaMYB and TaWRKY expression followed by stimulation of expression of a plethora of stress related genes.

View Article and Find Full Text PDF

The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions.

View Article and Find Full Text PDF

Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria Arthrobacter protophormiae (SA3) and promoting plant growth through improved colonization of beneficial microbes like Rhizobium leguminosarum (R) and Glomus mosseae (G). The experiment comprised of treatments with combinations of SA3, G, and R under varying levels of salinity.

View Article and Find Full Text PDF

Background: Mentha arvensis is cultivated in large parts of the world for its menthol-rich essential oil. The study investigates the potential of four mycorrhizal fungi, viz. Glomus mosseae (Gm), Glomus aggregatum (Ga), Glomus fasciculatum (Gf) and Glomus intraradices (Gi) in alleviating NaCl-induced salt stress in Mentha arvensis cv.

View Article and Find Full Text PDF

Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri.

View Article and Find Full Text PDF

Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress.

View Article and Find Full Text PDF