Bare zinc oxide (ZnO) and Ba-doped ZnO (BZO) samples were prepared by using a simple precipitation method. The effects of Barium doping on the structural, morphological, and optoelectronic properties, as well as on the physico-chemical features of the surface were investigated and correlated with the observed photocatalytic activity under natural solar irradiation. The incorporation of Ba ions into the ZnO structure increased the surface area by ca.
View Article and Find Full Text PDFFluorination of the TiO surface has been often reported as a tool to increase the photocatalytic efficiency due to the beneficial effects in terms of production of oxidizing radicals. Moreover, it is shown that the unique amphiphilic properties of the fluorinated TiO (TiO-F) surface allow one to use this material as a stabilizer for the formulation of Pickering emulsions of poorly soluble pollutants such as nitrobenzene (NB) in water. The emulsions have been characterized in terms of size of the droplets, type of emulsion, possibility of phase inversion, contact angle measurements, and optical microscopy.
View Article and Find Full Text PDFPickering emulsions provide a new way to enhance the efficiency of photocatalytic degradation of water-insoluble pollutants. Indeed, the semiconductor solid particles dually act as the photocatalyst and stabilizer of the emulsion droplets whose size dramatically affects the photocatalytic reaction. The present work aims at the validation of this concept by using bare TiO without any surface modification.
View Article and Find Full Text PDF