Publications by authors named "Nidetzky B"

Background: Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications.

Results: To provide a mechanistic basis for the stabilization of the carrier-bound oxidase we analyzed the stabilizing effects of immobilization in TvDAO exposed to the stress of elevated temperature and operational conditions. Two different strategies of immobilization were used: multi-point covalent binding to epoxy-activated Sepabeads EC-EP; and non-covalent oriented immobilization of the enzyme through affinity of its N-terminal Strep-tag to Strep-Tactin coated on insoluble particles.

View Article and Find Full Text PDF

We report on the development of a whole-cell biocatalytic system based on the popular host Saccharomyces cerevisiae that shows programmable performance and good atom economy in the reduction of alpha-keto ester substrates. The NADPH-dependent yeast reductase background was suppressed through the combined effects of overexpression of a biosynthetic NADH-active reductase (xylose reductase from Candida tenuis) to the highest possible level and the use of anaerobic reaction conditions in the presence of an ethanol co-substrate where mainly NADH is recycled. The presented multi-level engineering approach leads to significant improvements in product optical purity along with increases in the efficiency of alpha-keto ester reduction and co-substrate yield (molar ratio of formed alpha-hydroxy ester to consumed ethanol).

View Article and Find Full Text PDF

Microstructured flow reactors are emerging tools for biocatalytic process development. A compelling design is that of the coated-wall reactor where enzyme is present as a surface layer attached to microchannel walls. However, preparation of a highly active wall biocatalyst remains a problem.

View Article and Find Full Text PDF

The production of sorbitol and gluconic acid by isolated glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis has been studied in a convective, 100-mL loop reactor with tangential ultrafiltration. Using a dilution rate of 0.04/h and 5 kU/L GFOR, substrate conversion (3 M sugar) in a single stage was >85%, and productivities of 126 g sorbitol/(L x d) were obtained.

View Article and Find Full Text PDF

A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted enzymatic function, catalyzing NAD(H)-dependent interconversion of d-mannitol 1-phosphate and d-fructose 6-phosphate with a specific reductase activity of 170 U/mg at pH 7.1 and 25 degrees C.

View Article and Find Full Text PDF

Sucrose phosphorylase utilizes a glycoside hydrolase-like double displacement mechanism to convert its disaccharide substrate and phosphate into alpha-d-glucose 1-phosphate and fructose. Site-directed mutagenesis was employed to characterize the proposed roles of Asp(196) and Glu(237) as catalytic nucleophile and acid-base, respectively, in the reaction of sucrose phosphorylase from Leuconostoc mesenteroides. The side chain of Asp(295) is suggested to facilitate the catalytic steps of glucosylation and deglucosylation of Asp(196) through a strong hydrogen bond (23 kJ/mol) with the 2-hydroxyl of the glucosyl oxocarbenium ion-like species believed to be formed in the transition states flanking the beta-glucosyl enzyme intermediate.

View Article and Find Full Text PDF

Background: Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR about 170-fold from NADPH in the wild-type to NADH in a Lys274-->Arg Asn276-->Asp double mutant which in spite of the structural modifications introduced had retained the original catalytic efficiency for reduction of xylose by NADH.

View Article and Find Full Text PDF

Saturation transfer difference NMR spectroscopy is used to study non-covalent interactions between four different glycostructure transforming enzymes and selected substrates and products. Resulting binding patterns represent a molecular basis of specific binding between ligands and biocatalysts. Substrate and product binding to Aspergillus fumigatus glycosidase and to Candida tenuis xylose reductase are determined under binding-only conditions.

View Article and Find Full Text PDF

Schizophyllum communealpha,alpha-trehalose phosphorylase utilizes a glycosyltransferase-like catalytic mechanism to convert its disaccharide substrate into alpha-d-glucose 1-phosphate and alpha-d-glucose. Recruitment of phosphate by the free enzyme induces alpha,alpha-trehalose binding recognition and promotes the catalytic steps. Like the structurally related glycogen phosphorylase and other retaining glycosyltransferases of fold family GT-B, the trehalose phosphorylase contains an Arg507-XXXX-Lys512 consensus motif (where X is any amino acid) comprising key residues of its putative phosphate-binding sub-site.

View Article and Find Full Text PDF

The structure of Pseudomonas fluorescens mannitol 2-dehydrogenase with bound NAD+ leads to the suggestion that the carboxylate group of Asp(69) forms a bifurcated hydrogen bond with the 2' and 3' hydroxyl groups of the adenosine of NAD+ and contributes to the 400-fold preference of the enzyme for NAD+ as compared to NADP+. Accordingly, the enzyme with the Asp(69)-->Ala substitution was found to use NADP(H) almost as well as wild-type enzyme uses NAD(H). The Glu(68)-->Lys substitution was expected to enhance the electrostatic interaction of the enzyme with the 2'-phosphate of NADP+.

View Article and Find Full Text PDF

The use of DAO (D-amino acid oxidase) for the conversion of cephalosporin C has provided a significant case for the successful implementation of an O(2)-dependent biocatalyst on an industrial scale. Improvement of the operational stability of the immobilized oxidase is, however, an important goal of ongoing process optimization. We have examined DAO from the yeast Trigonopsis variabilis with the aim of developing a rational basis for the stabilization of the enzyme activity at elevated temperature and under conditions of substrate turnover.

View Article and Find Full Text PDF

His334 facilitates catalysis by Corynebacterium callunae starch phosphorylase through selective stabilization of the transition state of the reaction, partly derived from a hydrogen bond between its side chain and the C-6 hydroxy group of the glucosyl residue undergoing transfer to and from phosphate. We have substituted His334 by a Gly and measured the disruptive effects of the site-directed replacement on active site function using steady-state kinetics and NMR spectroscopic characterization of the cofactor pyridoxal 5'-phosphate and binding of carbohydrate ligands. Purified H334G showed 0.

View Article and Find Full Text PDF

A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation.

View Article and Find Full Text PDF

Site-directed mutagenesis was used to examine the specificity of Leuconostoc mesenteroides sucrose phosphorylase for utilization of fructose and phosphate as leaving group/nucleophile of the reaction. The largest catalytic defect in Arg(137)-->Ala (approximately 60-fold) and Tyr(340)-->Ala (approximately 2500-fold) concerned phosphate dependent half-reactions whereas that in Asp(338)-->Asn (approximately 7000-fold) derived from disruption of steps where fructose departs or attacks. The relative efficiencies for enzyme glucosylation by sucrose compared with alpha-d-glucose-1-phosphate and enzyme deglucosylation by phosphate compared with fructose were 5.

View Article and Find Full Text PDF

A microfluidic immobilised enzyme reactor consisting of a catalytically functionalised microstructure fabricated from silicone rubber material was used for steady-state kinetic characterisation of a thermophilic beta-glycosidase under pressure-driven flow conditions and continuous conversion of lactose by this enzyme at 80 degrees C.

View Article and Find Full Text PDF

Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.

View Article and Find Full Text PDF

Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.

View Article and Find Full Text PDF

Wild-type Candida tenuis xylose reductase and two Trp-23 mutants thereof catalyze NADH-dependent reduction of a homologous series of aromatic alpha-keto esters with absolute pseudo re-face stereoselectivity and broad tolerance for the substituent on the aromatic ring, producing the corresponding R-alcohols in high yield.

View Article and Find Full Text PDF

The role of acid-base catalysis in the two-step enzymatic mechanism of alpha-retaining glucosyl transfer by Leuconostoc mesenteroides sucrose phosphorylase has been examined through site-directed replacement of the putative catalytic Glu237 and detailed comparison of purified wild-type and Glu237-->Gln mutant enzymes using steady-state kinetics. Reactions with substrates requiring Brønsted catalytic assistance for glucosylation or deglucosylation were selectively slowed at the respective step, about 10(5)-fold, in E237Q. Azide, acetate and formate but not halides restored catalytic activity up to 300-fold in E237Q under conditions in which the deglucosylation step was rate-determining, and promoted production of the corresponding alpha-glucosides.

View Article and Find Full Text PDF

Trehalose phosphorylase from the basidiomycete Pleurotus ostreatus (PoTPase) was isolated from fungal fruit bodies through approximately 500-fold purification with a yield of 44%. Combined analyses by SDS-PAGE and gelfiltration show that PoTPase is a functional monomer of approximately 55 kDa molecular mass. PoTPase catalyzes the phosphorolysis of alpha,alpha-trehalose, yielding alpha-d-glucose 1-phosphate (alphaGlc 1-P) and alpha-d-glucose as the products.

View Article and Find Full Text PDF

Sucrose phosphorylase catalyzes the reversible conversion of sucrose (alpha-D-glucopyranosyl-1,2-beta-D-fructofuranoside) and phosphate into D-fructose and alpha-D-glucose 1-phosphate. We report on the molecular cloning and expression of the structural gene encoding sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase) in Escherichia coli DH10B. The recombinant enzyme, containing an 11 amino acid-long N-terminal metal affinity fusion peptide, was overproduced 60-fold in comparison with the natural enzyme.

View Article and Find Full Text PDF

beta-Glycosidase CelB from the hyperthermophilic archaeon Pyrococcus furiosus is a versatile biocatalyst that has been used for the hydrolysis and synthesis of beta-d-glycosidic compounds at high temperatures and in non-conventional solvents. In spite of its outstanding thermal stability, CelB is prone to inactivation in the presence of reducing sugars and through recirculation in loop enzyme reactors. Entrapment into E.

View Article and Find Full Text PDF

The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.

View Article and Find Full Text PDF

Insoluble protein particles showing high specific enzyme activity are potentially useful biocatalysts. The commercialized crosslinked enzyme crystals and aggregates have the disadvantage that their preparation requires isolation of the protein before the critical precipitation step. We introduce a novel concept of controlled precipitation in vivo in which the target enzyme is fused to the cellulose-binding domain (CBD) of Clostridium cellulovorans, and expression in Escherichia coli is performed under conditions that induce selective pull down of the folded chimeric protein via intermolecular self-aggregation of the CBD.

View Article and Find Full Text PDF