This study presents a comprehensive investigation into NiCoFeO (x = 0.5) spinel nanoparticles synthesized through a one-pot hydrothermal method using Co(NO).6HO and Ni(NO).
View Article and Find Full Text PDFSignificant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support.
View Article and Find Full Text PDFThis study offers a comparison between three different types of thermoresponsive (TR) and thermo-pH-salt (TPR) multiresponsive polymers including homopoly(-isopropylacrylamide) (PNIPAAm), copolymers with three different monomers, 2-hydroxyethyl methacrylate (HEMA), -dimethylacrylamide (DMAAm), and styrene (S) at three different concentrations (5, 10, and 20 mol %), and a PNIPAAm terpolymer with 5, 10, and 20 mol % 2-((dimethylamino)methyl)-4-methylphenyl acrylate (DMAMCA) and 10 mol % HEMA, DMAAm, and S monomers. All polymers were chemically analyzed with H NMR and Fourier transform infrared spectroscopy (FT-IR) as well as gel permeation chromatography (GPC) for the molecular weights and dispersity and differential scanning calorimeter (DSC) for the glass transition temperatures. The cloud point, also known as the phase separation temperature (), was determined for all polymers by a turbidity test using a UV-vis spectrophotometer; a micro-differential scanning calorimeter was used for measuring the cloud point in deionized water.
View Article and Find Full Text PDFMXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of TiCT MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes.
View Article and Find Full Text PDFIn this study, 3-aminopropyltriethoxysilane (APTES) modified γ-alumina nanoparticles were utilized to improve the copper removal efficiency of polyethersulfone (PES) membranes. Alumina nanoparticles were first modified by APTES silane coupling agent before impregnating into PES composite membranes. The PES membranes were fabricated by incorporating three different amounts of modified nanoparticles by a phase inversion process.
View Article and Find Full Text PDF