Publications by authors named "Niculina D Hadade"

Mechanically interlocked molecules (MIMs) have been important synthetic targets in supramolecular chemistry due to their beautiful structures and intriguing properties. We present herein a new synthetic strategy to access [2]rotaxanes, namely active-metal template clipping. We discuss the design of the target [2]rotaxanes, synthesis and characterization of the axle, macrocycle precursors and macrocycles as well as preparation of the final [2]rotaxanes by active template copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) as key step of the synthesis.

View Article and Find Full Text PDF

Design of conformationally stable compounds with planar chirality is a topic of great interest mainly because of their potential applications as enantioselective ligands or other functional materials. Herein, we present the design and synthesis of novel planar chiral cyclophanes, obtained by anchoring of the -terphenyl unit, with bridges of different lengths and rigidities, along with their nuclear magnetic resonance, mass spectrometry, and X-ray characterizations. We investigated the influence of the structural particularities of the bridges over the stability of the enantiomers, by means of nuclear magnetic resonance and chiral high-performance liquid chromatography as well as by density functional theory calculations.

View Article and Find Full Text PDF

Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates.

View Article and Find Full Text PDF

The synthesis of some novel donor-acceptor and acceptor-donor-acceptor systems containing a 2,2'-bi[3,2-]thienothiophene donor block and various electron-accepting units is described alongside their photophysical properties studied using electrochemistry, optical spectroscopy and theoretical calculations. The obtained results show that the energy levels can be modulated by changing the strength of the acceptor unit. Among the three investigated end-groups, 1,1-dicyanomethylene-3-indanone exhibited the largest bathochromic shift and the lowest band gap suggesting the strongest electron-withdrawing character.

View Article and Find Full Text PDF

Arylazopyrazoles stand out among the azoheteroarene photoswitches due to their excellent properties in terms of stability of the least stable isomer and conversion between isomers, leading to their use in several interesting applications. We report herein the synthesis of arylazo-trifluoromethyl-substituted pyrazoles and their switching behavior under light irradiation. UV-vis and NMR experiments showed that arylazo-1-3,5-bis(trifluoromethyl)pyrazoles displayed very long half-lives in DMSO (days), along with reasonable values of other parameters that characterize a photoswitch.

View Article and Find Full Text PDF

We report herein our attempt to synthesize an analog of indacenedithiophene (IDT) based on a tetraphenylhexyl substituted, covalently bridged -terthienyl unit. Instead of the expected compound the adopted synthetic route led to the formation of an unexpected, new naphtho[2,3-]thiophene derivative. The structure of this compound was fully characterized by NMR and HRMS as well as single crystal X-ray diffraction and its electronic properties have been analyzed by UV-vis absorption spectroscopy and cyclic voltammetry.

View Article and Find Full Text PDF

Palladium nanoparticles entrapped in porous aromatic frameworks (PAFs) or covalent organic frameworks may promote heterogeneous catalytic reactions. However, preparing such materials as active nanocatalysts usually requires additional steps for palladium entrapment and reduction. This paper reports as a new approach, a simple procedure leading to the self-entrapment of Pd nanoparticles within the PAF structure.

View Article and Find Full Text PDF

We describe the synthesis of a novel polyamino polycarboxylic ligand, its ability to coordinate metal-ions and attachment to a solid support designed for protein purification through Immobilised Metal-ion Affinity Chromatography (IMAC). The resin was found to be highly efficient for purification of His-tagged HCV E2 glycoproteins expressed in 293T mammalian cells.

View Article and Find Full Text PDF

Excess ascorbate (as expected in intravenous treatment proposed for COVID-19 management, for example) oxidizes and/or degrades hemoglobin and albumin, as evidenced by UV-vis spectroscopy, gel electrophoresis, and mass spectrometry. It also degrades hemoglobin in intact blood or in isolated erythrocytes. The survival rates and metabolic activities of several leukocyte subsets implicated in the antiviral cellular immune response are also affected.

View Article and Find Full Text PDF

In this study we describe the synthesis and characterisation of a new hydrazone-based fluorescent compound that is able to selectively label the endoplasmic reticulum (ER) in yeast and mammalian living cells. The fluorescence properties of the compound depended on the DMSO/water ratio and on the pH. NMR experiments allowed determination of the conformation adopted in various environments.

View Article and Find Full Text PDF

Starting from Kryptofix 22 two different branches were covalently attached through the nitrogen atoms, one containing a fluorescent moiety and the other the stable free radical TEMPO. The novel derivative exhibits fluorescence and paramagnetic properties, while the diaza-crown part ensures the affinity for alkaline metal-ions.

View Article and Find Full Text PDF

The aromatic nucleophilic substitution reaction based synthesis of a three-armed cryptand displaying 2,4,6-triphenyl-1,3,5-triazine units as caps and pyridine rings in the bridges, along with NMR, MS and molecular modelling-based structural analysis of this compound are reported. Appropriate NMR and molecular modelling investigations proved the formation of 1:1 host-guest assemblies between the investigated cryptand and some polynuclear aromatic hydrocarbons or their derivatives.

View Article and Find Full Text PDF

This work is focused on self-assembled monolayers (SAMs) fabrication, using two types of Au surfaces, by subsequent attachment of different layers in order to develop a stable platform consisting of covalent multilayer functionalized gold surfaces. The key step in the construction of SAMs is the covalent linkage to the gold surface, via an amino-thiol derivative, of a cyclooctyne unit exhibiting strained triple bonds which react fast (catalysts are not needed) and quantitatively with organic azides and enable the introduction of various chemical functionalized entities on the gold surface. The versatility of the system is demonstrated by the reaction of the cyclooctyne decorated gold surface with an azide functionalized terpyridine followed by step by step complexation with Fe(II) and another terpyridine unit resulting into a multilayer covered gold surface.

View Article and Find Full Text PDF

The formation of highly ordered supramolecular architectures via cooperative C(aliphatic)-H·anion contacts between β-HCH and various anions (Cl, Br, I and HSO) was investigated by single crystal X-ray diffractometry, molecular modelling, ESI-MS and H-NMR titrations.

View Article and Find Full Text PDF

An easy and powerful access to 3,3',6,6'-tetrasubstituted 9,9'-spirobifluorene derivatives with tetrahedral orientation of the peripheral groups (i.e., -I, -CN, -NO2, -CH═O, -COOH, -C≡CH, -4-Py) was developed.

View Article and Find Full Text PDF

Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function.

View Article and Find Full Text PDF

Development of lanthanide-based luminescent "switch-on" systems via azide-alkyne [3+2] cycloaddition is described. We used these for non-specific protein labeling and as tags for specific and selective activity-based protein labeling.

View Article and Find Full Text PDF

Various cryptands based on 1,3-dioxane decorated 1,3,5-trisubstituted-benzene building blocks, connected by different chains (exhibiting ester, ether, or triazol groups) to several units with C3 symmetry, are reported. The structure of the compounds was investigated by single crystal X-ray diffraction, NMR, and MS. The role of the 1,3-dioxane units was targeted to ensure the preorganization of the substrate for the macrocyclization reactions on one side, and for easier NMR assignment of the structure of the cryptands on the other side.

View Article and Find Full Text PDF

Polydopamine (PDA) formed by the oxidation of dopamine is an important polymer, in particular, for coating various surfaces. It is composed of dihydroxyindole, indoledione, and dopamine units, which are assumed to be covalently linked. Although PDA has been applied in a manifold way, its structure is still under discussion.

View Article and Find Full Text PDF

Reaction between ortho-phthalaldehyde and various aroylhydrazines unexpectedly yields N-(1-(2-aryl-hydrazono)isoindolin-2-yl)benzamides as major products along with the predictable 1,2-bis-aroylhydrazones. NMR investigation of the major reaction products indicate the presence of a mixture of geometrical isomers, in various ratios. Single crystal X-ray diffraction confirms the proposed structure and indicates a Z configuration of the C═N double bond substitutents.

View Article and Find Full Text PDF

We present here a new, general, solid phase strategy for the synthesis of sequence independent peptidyl-fluoromethyl ketones using standard Fmoc peptide chemistry. Our method is based on the synthesis of bifunctional linkers which allows the incorporation of amino acid fluoromethyl ketone unit at the C-terminal end of peptide sequences. Application of this approach for the synthesis of activity based probes for SENPs is also described.

View Article and Find Full Text PDF

We report here the synthesis and biochemical properties of a new peptidyl activity-based probe 1 for SUMO proteases, SENPs. The activity-based probe has at its C terminus a glycine-derived fluoromethylketone moiety as a reactive group designed to target the active-site cysteine of SENPs. Based on a study of the interactions between SENPs and SUMOs, we introduced further design elements that allow the activity-based probe to selectively target SENPs at low micromolar to high nanomolar concentrations.

View Article and Find Full Text PDF