FeMnSn Heusler alloy, obtained by mechanical alloying, was subjected to larger milling times in the range of 30-50 h to study the phase stability and morphology. X-ray diffraction studies have shown that the milled samples crystallise in a disordered A structure. The A structure was found to be stable in the milling range studied, contrary to the computation studies performed on this composition.
View Article and Find Full Text PDFA NiMnSn Heusler alloy was obtained as a single B phase after 12 h of mechanical milling. The influence of prolonged milling on the phase stability was analysed for milling times up to 50 h, related to mean crystallite size, lattice strain, and electrical resistivity. The nature of the powders in the milled range was found to be nanocrystalline, with a mean crystallite size of about 33 ± 2 nm.
View Article and Find Full Text PDFThe damage due to embrittlement of the sintering furnace belt and its replacement after a certain time of use represents a problem for the manufacturers of sintered parts. Finding out the reason for the damage could help to increase the duration of its operation. This research aimed to investigate the causes of embrittlement, considering both the temperatures and atmosphere of the sintering furnace to which the furnace belt is exposed during its operation.
View Article and Find Full Text PDFThis paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35−57%) and uniform structure. SPS was used to consolidate the specimens.
View Article and Find Full Text PDF