Publications by authors named "Niculescu F"

The experimental research was focused on the investigation of valuable material from spent Ni-MH type AA batteries, namely the metal grid anodes and the black mass material (anode and cathode powder). The materials of interest were analyzed by X-ray fluorescence spectroscopy (XRF), ICP-OES (inductively coupled plasma optical emission spectrometry), optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The analyzed grids have a high Fe content, but some of them correspond to the Invar alloy with approx.

View Article and Find Full Text PDF

Properties such as lower melting temperature, good tensile strength, good reliability, and well creep resistance, together with low production cost, make the system Bi-Sn an ideal candidate for fine soldering in applications such as reballing or reflow. The first objective of the work was to determine the thermodynamic quantities of Bi and Sn using the electromotive force measurement method in an electrolytic cell (Gibbs' enthalpies of the mixture, integral molar entropies, and the integral molar excess entropies were determined) at temperatures of 600 K and 903 K. The second objective addressed is the comprehensive characterization of three alloy compositions that were selected and elaborated, namely Bi25Sn75, Bi50Sn50, and Bi75Sn25, and morphological and structural investigations were carried out on them.

View Article and Find Full Text PDF

The scope of this study consists of setting up of an integrated cost-effective sampling & laboratory analyses procedure which delineates sampling, sub-sampling and analytical uncertainties in case of fine-grained extractive waste deposits. This procedure is designed to support the decision makers towards fine-grained waste deposits upcycling and land reclamation. This procedure consists of a balanced replicated sampling design (BRSD) coupled with a three split levels ANOVA data processing.

View Article and Find Full Text PDF

The β-Ti alloys have attracted the attention of researchers due to their excellent properties and their remarkable biocompatibility. The present study evaluated the mechanical behavior analysis (hardness, compressive strength, and modulus of elasticity) of the Ti-15Mo-W system. For experimental research, we chose the TiMo15 biocompatible alloy as a starting material.

View Article and Find Full Text PDF

Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries.

View Article and Find Full Text PDF

The pathogenesis of atherosclerotic inflammation is a multi-step process defined by the interweaving of excess modified lipid particles, monocyte-macrophages populations, and innate immune and adaptive immunity effectors. A part of innate immunity, the complement system, is an important player in the induction and progression of atherosclerosis. The accumulation of either oxidized or enzymatically modified LDL-bound to C-reactive protein or not-prompts complement activation leading to the assembly of the terminal complement C5b-9 complex in the atherosclerotic lesion.

View Article and Find Full Text PDF

Complement system activation plays an important role in both innate and acquired immunity, with the activation of complement and the subsequent formation of C5b-9 terminal complement complex on cell membranes inducing target cell death. Recognition of this role for C5b-9 leads to the assumption that C5b-9 might play an antitumor role. However, sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways and transcription factors in cancer cells, indicating a role in tumor promotion for this complement complex.

View Article and Find Full Text PDF

Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis.

View Article and Find Full Text PDF

Voltage-gated potassium (K(v)) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of K(v) channels in these cells had not been investigated. Differentiated OLGs were found to express K(v)1.

View Article and Find Full Text PDF

We have previously reported that TRAIL is upregulated on T cells from patients with lupus and that T cell associated TRAIL enhances autoimmune parameters in a murine model of lupus. Whether TRAIL/TRAIL-R interaction plays a role in organ involvement such as lupus nephritis has not yet been assessed. We demonstrate here that TRAIL, DR4 and DR5 are upregulated in proximal and distal tubules of patients with proliferative lupus nephritis.

View Article and Find Full Text PDF

Proliferation of vascular endothelial cells (EC) and smooth muscle cells (SMC) is a critical event in angiogenesis and atherosclerosis. We previously showed that the C5b-9 assembly during complement activation induces cell cycle in human aortic EC (AEC) and SMC. C5b-9 can induce the expression of Response Gene to Complement (RGC)-32 and over expression of this gene leads to cell cycle activation.

View Article and Find Full Text PDF

Complement activation plays a central role in autoimmune demyelination. To explore the possible effects of C5 on post-inflammatory tissue repair, we investigated the transcriptional profile induced by C5 in chronic experimental allergic encephalomyelitis (EAE) using oligonucleotide arrays. We used C5-deficient (C5-d) and C5-sufficient (C5-s) mice to compare the gene expression profile and we found that 390 genes were differentially regulated in C5-s mice as compared to C5-d mice during chronic EAE.

View Article and Find Full Text PDF

We have analyzed the localization of dendritic cells (DCs) in non-lesional gray matter (NLGM) in comparison to non-lesional white matter (NLWM) and acute or chronic active multiple sclerosis (MS) lesions. Immunohistochemistry was performed on cryostat sections for DCs markers (CD209, CD205, CD83) and other markers for inflammatory cells (CD68, CD8, CD4, CD3, CCR7, CCR5). We found cells expressing CD209 and containing myelin basic protein in both perivascular and parenchymal areas of NLGM.

View Article and Find Full Text PDF

The activation of complement system is important factor in inflammatory, neurodegenerative and cerebrovascular diseases. CNS cells are able to synthesize complement components, and myelin and oligodendrocytes (OLG) are known to activate the classical pathway of complement in vitro in the absence of antibodies. Although activation of the complement system is known to promote tissue injury, recent evidence has also indicated that this process can have neuroprotective effects.

View Article and Find Full Text PDF

Multiple sclerosis and its animal model experimental allergic encephalomyelitis are inflammatory demyelinating diseases of the central nervous system mediated by activated lymphocytes, macrophages/microglia and the complement system. Complement activation and the C5b-9 terminal complex contribute to the pathogenesis of these diseases through its role to promote demyelination. C5b-9 was also shown to protect oligodendrocytes from apoptosis both in vitro and in vivo.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It is mediated by activated lymphocytes, macrophages, microglia, and complement. In MS, myelin-forming oligodendrocytes (OLGs) are the targets of inflammatory and immune attacks.

View Article and Find Full Text PDF

Migration and proliferation of aortic endothelial cells (AEC) are critical processes involved in angiogenesis, atherosclerosis, and postangioplasty restenosis. Activation of complement and assembly of the C5b-9 complement complex have been implicated in the pre-lesional stage of atherogenesis and progression of the atherosclerotic lesion. We have shown that C5b-9 induces proliferation and activates phosphatidylinositol 3-kinase (PI3K), but it is unknown whether this can lead to activation of Akt in AEC, a major downstream target of PI3K, or if C5b-9 can induce the migration of AEC, a critical step in angiogenesis.

View Article and Find Full Text PDF

Activation of the terminal complement cascade involving C5 to C9 proteins has a beneficial role for oligodendrocytes (OLG) in experimental allergic encephalomyelitis, an animal model of multiple sclerosis, by protecting them from apoptotic cell death. We have previously shown that sublytic C5b-9 complexes, through posttranslational regulation of Bad, inhibit the mitochondrial pathway of apoptosis induced by serum deprivation. In the present study, we examined the possible involvement of the caspase-8 and Fas pathway in OLG apoptosis and the role of C5b-9 in this process.

View Article and Find Full Text PDF

Complement is a major component of innate immune system involved in defending against all the foreign pathogens through complement fragments that participate in opsonization, chemotaxis, and activation of leukocytes and through cytolysis by C5b-9 membrane attack complex. Bacterias and viruses have adapted in various ways to escape the complement activation, and they take advantage of the complement system by using the host complement receptors to infect various cells. Complement activation also participates in clearance of apoptotic cells and immune complexes.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is characterized by central nervous system perivenular and parenchymal mononuclear cell infiltrates consisting of activated T cells and macrophages. We recently demonstrated that elevated expression of the voltage-gated potassium channel, Kv1.3, is a functional marker of activated effector memory T (T(EM)) cells in experimental allergic encephalomyelitis and in myelin-specific T cells derived from the peripheral blood of patients with MS.

View Article and Find Full Text PDF

Complement system activation plays an important role in innate and acquired immunity. Activation of complement leads to the formation of C5b-9 terminal complex. While C5b-9 can promote cell lysis, sublytic assembly of C5b-9 on plasma membranes induces cell cycle activation and survival.

View Article and Find Full Text PDF

The parent-into-F1 mouse model (P-->F1) of acute graft-vs.-host disease (GVHD) is a useful model of human acute GVHD because it allows the study of the T cell contribution to pathology without the complicating effects of conditioning regimens. To determine the similarity of this model to human GVHD, we assessed injury in organs typically involved in human acute GVHD (skin, liver) and less typically involved organs (spleen, kidney, lung).

View Article and Find Full Text PDF

Tumors often exhibit deregulation of the cell cycle and overexpression of cyclins and cyclin-dependent kinases (CDKs). Response gene to complement (RGC)-32 is a substrate and regulator of CDC2 and its overexpression induces cell cycle activation. We investigated RGC-32 mRNA and protein expression in tumors with special emphasis in colon carcinoma.

View Article and Find Full Text PDF

Activation of the complement system plays an important role in innate and acquired immunity. Activation of complement and subsequent formation of C5b-9 channels on the surface of cellular membranes leads to cell lysis. When the number of channels assembled on the surface of nucleated cells is limited, C5b-9 does not cause lysis, but instead can induce cell-cycle progression by activating signal transduction pathways, transcription factors, and key components of the cell-cycle machinery.

View Article and Find Full Text PDF