Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 - x) Ba(TiZr)O(BaCa)TiO (BCTZ50, x = 50) and Polyethylenimine (PEI). The layers were deposited by two laser-based techniques, namely pulsed laser deposition (PLD) for the lead-free material and matrix assisted pulsed laser evaporation (MAPLE) for the sensitive polymer.
View Article and Find Full Text PDFIn this study we report the specific interaction of various gases on the modified surface of acoustic wave devices for gas sensor applications, using the piezoelectric ceramic material BaSrTiO (BST), with different concentrations of Sr. For enhancing the sensitivity of the sensor, the conductive polymer polyethylenimine (PEI) was deposited on top of BST thin films. Thin films of BST were deposited by pulsed laser deposition (PLD) technique and integrated into a test heterostructure with PEI thin films deposited by matrix assisted pulsed laser evaporation (MAPLE) and interdigital Au electrodes (IDT).
View Article and Find Full Text PDFTuning the intrinsic structural and stoichiometric properties by different means is used for increasing the green energy production efficiency of complex oxide materials. Here, we report on the formation of self-assembled nanodomains and their effects on the photoelectrochemical (PEC) properties of LaFeO (LFO) epitaxial thin films as a function of layer's thickness. The variation with the film's thickness of the structural parameters such as in-plane and out-of-plane crystalline coherence length and the coexistence of different epitaxial orientation-<100>SrTiO//<001> LFO, <100>SrTiO//<110> LFO and [110] LFO//[10] STO, as well as the appearance of self-assembled nanodomains for film's thicknesses higher than 14 nm, is presented.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2021
Due to its physical and chemical properties, the n-type tungsten oxide (WO) semiconductor is a suitable photoanode for water decomposition reaction. The responses of the photoelectrochemical PEC water-splitting properties as an effect of structural and optical changes of WO thin films, as well as the nature of electrolyte solutions, were studied in this work. The WO thins films have been obtained by pulsed laser deposition (PLD) on silicon (Si(001)) covered with platinum substrates using three different laser wavelengths.
View Article and Find Full Text PDFDeveloping a controlled method for obtaining hybrid enzymatic-based interfaces for sensing application require the use of a multiuse, reusable sensor. By controlling the interface characteristics in terms of the surface chemistry, thickness, and roughness, a tailored response toward various toxic compounds can be obtained, regarding both materials used as active surfaces and fabrication methods. Herein, we report a preliminary study on using a laser-based method (i.
View Article and Find Full Text PDFLaser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2.
View Article and Find Full Text PDF