Cullin-5 (Cul5) coordinates assembly of cullin-RING-E3 ubiquitin (Ub) ligase (CRL) complexes that include Suppressor of Cytokine Signaling (SOCS)-box-containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway.
View Article and Find Full Text PDFThrombopoietin (Tpo), which binds to its specific receptor, the Mpl protein, is the major cytokine regulator of megakaryopoiesis and circulating platelet number. Tpo binding to Mpl triggers activation of Janus kinase 2 (Jak2) and phosphorylation of the receptor, as well as activation of several intracellular signalling cascades that mediate cellular responses. Three tyrosine (Y) residues in the C-terminal region of the Mpl intracellular domain have been implicated as sites of phosphorylation required for regulation of major Tpo-stimulated signalling pathways: Mpl-Y565, Mpl-Y599 and Mpl-Y604.
View Article and Find Full Text PDFThrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy.
View Article and Find Full Text PDFProtein Tyrosine Phosphatase 1B (PTP1B) is the prototypical protein tyrosine phosphatase and plays an essential role in the regulation of several kinase-driven signalling pathways. PTP1B displays a preference for bisphosphorylated substrates. Here we identify PTP1B as an inhibitor of IL-6 and show that, in vitro, it can dephosphorylate all four members of the JAK family.
View Article and Find Full Text PDFSuppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling.
View Article and Find Full Text PDFMARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins.
View Article and Find Full Text PDFThe dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8 T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells.
View Article and Find Full Text PDFJanus kinases (JAKs) are found constitutively associated with cytokine receptors and are present in an inactive state prior to cytokine exposure. Activating mutations of JAKs are causative for a number of leukemias, lymphomas, and myeloproliferative diseases. In particular, the JAK2 mutant is found in most human cases of polycythemia vera, a disease characterized by over-production of erythrocytes.
View Article and Find Full Text PDFInterleukin 6 (IL6) is a cytokine that regulates a number of important immune and inflammatory pathways. We used the ability of IL6 to inhibit the clonal proliferation of the mouse M1 myeloid leukemia cell line in agar to positively screen a cDNA expression library for proteins that inhibited IL6 activity. We found three clones completely resistant to IL6 that contained the cDNA for the Membrane-Associated RING-CH E3 ubiquitin ligase MARCH2.
View Article and Find Full Text PDFThe innate immune system is our first line of defense against viral pathogens. Host cell pattern recognition receptors sense viral components and initiate immune signaling cascades that result in the production of an array of cytokines to combat infection. Retinoic acid-inducible gene-I (RIG-I) is a pattern recognition receptor that recognizes viral RNA and, when activated, results in the production of type I and III interferons (IFNs) and the upregulation of IFN-stimulated genes.
View Article and Find Full Text PDFThe SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition.
View Article and Find Full Text PDFThe etinoic acid-nducible ene- (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the partite otif 25 (TRIM25) B30.2 protein-interaction domain.
View Article and Find Full Text PDFThe hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal.
View Article and Find Full Text PDFInfluenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR).
View Article and Find Full Text PDFThe Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain.
View Article and Find Full Text PDFOncostatin M (OSM) and leukemia inhibitory factor (LIF) are IL-6 family members with a wide range of biological functions. Human OSM (hOSM) and murine LIF (mLIF) act in mouse cells via a LIF receptor (LIFR)-glycoprotein 130 (gp130) heterodimer. In contrast, murine OSM (mOSM) signals mainly via an OSM receptor (OSMR)-gp130 heterodimer and binds with only very low affinity to mLIFR.
View Article and Find Full Text PDFA collection of tributes and remembrances from esteemed colleagues, mentees, and friends on the life and work of "the father of hematopoietic cytokines".
View Article and Find Full Text PDFMutations of the reelin gene cause severe defects in cerebral cortex development and profound intellectual impairment. While many aspects of the reelin signaling pathway have been identified, the molecular and ultimate cellular consequences of reelin signaling remain unknown. Specifically, it is unclear if termination of reelin signaling is as important for normal cortical neuron migration as activation of reelin signaling.
View Article and Find Full Text PDFThe placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF) has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown.
View Article and Find Full Text PDFThe placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy.
View Article and Find Full Text PDFLeukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival.
View Article and Find Full Text PDFSuppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. Mice lacking functional SOCS4 are hypersusceptible to primary infection with influenza A virus (IAV), displaying dysregulated pro-inflammatory cytokine and chemokine production in the lungs, delayed viral clearance and impaired trafficking of influenza-specific CD8(+) T cells to the site of infection. Therefore, we postulated that SOCS4 is a critical regulator of anti-viral immunity.
View Article and Find Full Text PDF