Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression.
View Article and Find Full Text PDFCell Mol Neurobiol
August 2023
Melanoma is the most aggressive type of skin cancer. Brain metastasis is the worst scenario in metastatic melanoma and the treatment options for these patients are limited. Temozolomide (TMZ) is a chemotherapy agent used to treat primary central nervous system tumors.
View Article and Find Full Text PDFGlioblastoma (GB) is the most aggressive type of brain tumor with heterogeneity, strong invasive ability, and high resistance to therapy due to immunosuppressive mechanisms. CD73 is an overexpressed enzyme in GB that acts via two main mechanisms: (1) CD73 acts as an adhesion protein independent of the enzymatic activity or (2) via the catalyses of AMP to adenosine (ADO) generating a strong modulatory molecule that induces alterations in the tumor cells and in the tumor microenvironment cells (TME). Taken together, CD73 is receiving attention during the last years and studies demonstrated its dual potential benefit as a target to GB therapy.
View Article and Find Full Text PDFJ Control Release
March 2023
Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem.
View Article and Find Full Text PDFA series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A).
View Article and Find Full Text PDFPharmaceutics
August 2021
Neurochem Int
December 2020
Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects.
View Article and Find Full Text PDFGlioblastoma is a devastating tumor affecting the central nervous system with infiltrative capacity, high proliferation rate and chemoresistance. Therefore, it is urgent to find new therapeutic alternatives that improve this prognosis. Herein, we focused on tannic acid (TA) a polyphenol with antioxidant and antiproliferative activities.
View Article and Find Full Text PDFJ Trace Elem Med Biol
September 2019
Background: Gliomas are the most aggressive malignant tumors of the central nervous system. The diphenyl diselenide [(PhSe)] is an organoselenium compound that has multiple pharmacological properties. Previous reports showed that (PhSe) nanoencapsulation potentiates its in vitro antitumoral action and reduces its toxicity.
View Article and Find Full Text PDFA high-performance liquid chromatography method for temozolomide (TMZ) determination in complex biological matrices was developed and validated for application in in vitro, ex vivo and in vivo studies of new nanotechnology-based systems for TMZ nasal delivery. The method was able to quantify TMZ in nanoemulsions, following cellular uptake, in the porcine nasal mucosa and in mouse plasma and brain. Analyses were performed on a C column at 35°C, under UV detection at 330 nm.
View Article and Find Full Text PDF