Am J Respir Crit Care Med
November 2024
Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space.
View Article and Find Full Text PDFBackground: The precise mechanisms driving poor exercise tolerance in patients with fibrotic interstitial lung diseases (fibrotic ILDs) showing a severe impairment in single-breath lung diffusing capacity for carbon monoxide (D < 40% predicted) are not fully understood. Rather than only reflecting impaired O transfer, a severely impaired D may signal deranged integrative physiologic adjustments to exercise that jointly increase the burden of exertional symptoms in fibrotic ILD.
Methods: Sixty-seven subjects (46 with idiopathic pulmonary fibrosis, 24 showing D < 40%) and 22 controls underwent pulmonary function tests and an incremental cardiopulmonary exercise test with serial measurements of operating lung volumes and 0-10 Borg dyspnea and leg discomfort scores.
Ventilatory demand-capacity imbalance, as inferred based on a low ventilatory reserve, is currently assessed only at peak cardiopulmonary exercise testing (CPET). Peak ventilatory reserve, however, is poorly sensitive to the submaximal, dynamic mechanical ventilatory abnormalities that are key to dyspnea genesis and exercise intolerance. After establishing sex- and age-corrected norms for dynamic ventilatory reserve at progressively higher work rates, we compared peak and dynamic ventilatory reserve for their ability to expose increased exertional dyspnea and poor exercise tolerance in mild to very severe chronic obstructive pulmonary disease (COPD).
View Article and Find Full Text PDFSleep brings major challenges for the control of ventilation in humans, particularly the regulation of arterial carbon dioxide pressure ( ). In patients with COPD, chronic hypercapnia is associated with increased mortality. Therefore, nocturnal high-level noninvasive positive-pressure ventilation (NIV) is recommended with the intention to reduce down to normocapnia.
View Article and Find Full Text PDFMurine slowly adapting receptors (SARs) within airway smooth muscle provide volume-related feedback; however, their mechanosensitivity and morphology are incompletely characterized. We explored two aspects of SAR physiology: their inherent static mechanosensitivity and a potential link to pulmonary neuroepithelial bodies (NEBs). SAR mechanosensitivity displays a rate sensitivity linked to speed of inflation; however, to what extent static SAR mechanosensitivity is tuned for the very rapid breathing frequency (B ) of small mammals (e.
View Article and Find Full Text PDFPurpose: To assess whether night-time increases in mechanical loading negatively impact respiratory muscle function in COPD and whether compensatory increases in inspiratory neural drive (IND) are adequate to stabilize ventilatory output and arterial oxygen saturation, especially during sleep when wakefulness drive is withdrawn.
Methods: 21 patients with moderate-to-severe COPD and 20 age-/sex-matched healthy controls (CTRL) participated in a prospective, cross-sectional, one-night study to assess the impact of COPD on serial awake, supine inspiratory capacity (IC) measurements and continuous dynamic respiratory muscle function (esophageal manometry) and IND (diaphragm electromyography, EMGdi) in supine sleep.
Results: Supine inspiratory effort and EMGdi were consistently twice as high in COPD versus CTRL (p < 0.
Patients with mild chronic obstructive pulmonary disease (COPD) and lower resting diffusing capacity for carbon monoxide (DL) often report troublesome dyspnea during exercise although the mechanisms are not clear. We postulated that in such individuals, exertional dyspnea is linked to relatively high inspiratory neural drive (IND) due, in part, to the effects of reduced ventilatory efficiency. This cross-sectional study included 28 patients with GOLD I COPD stratified into two groups with ( = 15) and without ( = 13) DL less than the lower limit of normal (
Advances in implantable radio-telemetry or diverse biologging devices capable of acquiring high-resolution ambulatory electrocardiogram (ECG) or heart rate recordings facilitate comparative physiological investigations by enabling detailed analysis of cardiopulmonary phenotypes and responses in vivo. Two priorities guiding the meaningful adoption of such technologies are: (1) automation, to streamline and standardize large dataset analysis, and (2) flexibility in quality-control. The latter is especially relevant when considering the tendency of some fully automated software solutions to significantly underestimate heart rate when raw signals contain high-amplitude noise.
View Article and Find Full Text PDFObjective: Impaired respiratory mechanics and gas exchange may contribute to sleep disturbance in patients with COPD. We aimed to assess putative associations of different domains of lung function (airflow limitation, lung volumes, and gas exchange efficiency) with polysomnography (PSG)-derived parameters of sleep quality and architecture in COPD.
Methods: We retrospectively assessed data from COPD 181 patients ≥ 40 years of age who underwent spirometry, plethysmography, and overnight PSG.
Respirology
August 2021
Background And Objective: The combination of both reduced resting diffusing capacity of the lung for carbon monoxide (DL ) and ventilatory efficiency (increased ventilatory requirement for CO clearance [V˙ /V˙CO ]) has been linked to exertional dyspnoea and exercise intolerance in chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are poorly understood. The current study examined if low resting DL and higher exercise ventilatory requirements were associated with earlier critical dynamic mechanical constraints, dyspnoea and exercise limitation in patients with mild COPD.
Methods: In this retrospective analysis, we compared V˙ /V˙CO , dynamic inspiratory reserve volume (IRV), dyspnoea and exercise capacity in groups of patients with Global Initiative for Chronic Obstructive Lung Disease stage 1 COPD with (1) a resting DL at or greater than the lower limit of normal (≥LLN; Global Lung Function Initiative reference equations [n = 44]) or (2) below the
Background: The purpose of this study was to determine if altered central chemoreceptor characteristics contributed to the elevated ventilation relative to carbon dioxide production (V̇/V̇CO) response during exercise in mild chronic obstructive pulmonary disease (COPD).
Methods: Twenty-nine mild COPD and 19 healthy age-matched control participants undertook lung function testing followed by symptom-limited incremental cardiopulmonary exercise testing . On a separate day, basal (non-chemoreflex) ventilation (V̇), the central chemoreflex ventilatory recruitment threshold for CO (VRTCO), and central chemoreflex sensitivity (V̇) were assessed using the modified Duffin's CO rebreathing method.
Assessment of the ventilatory response to exercise is important in evaluating mechanisms of dyspnea and exercise intolerance in chronic cardiopulmonary diseases. The characteristic mechanical derangements that occur during exercise in chronic respiratory conditions have previously been determined in seminal studies using esophageal catheter pressure-derived measurements. In this brief review, we examine the emerging role and clinical utility of conventional assessment of dynamic respiratory mechanics during exercise testing.
View Article and Find Full Text PDFFront Med (Lausanne)
September 2020
Cardiopulmonary exercise testing (CPET) has traditionally included ventilatory and metabolic measurements alongside electrocardiographic characterization; however, research increasingly acknowledges the utility of also measuring inspiratory neural drive (IND) through its surrogate measure of diaphragmatic electromyography (EMGdi). While true IND also encompasses the activation of non-diaphragmatic respiratory muscles, the current review focuses on diaphragmatic measurements, providing information about additional inspiratory muscle groups for context where appropriate. Evaluation of IND provides mechanistic insight into the origins of dyspnea and exercise limitation across pathologies; yields valuable information reflecting the integration of diverse mechanical, chemical, locomotor, and metabolic afferent signals; and can help assess the efficacy of therapeutic interventions.
View Article and Find Full Text PDFMany patients with severe chronic obstructive pulmonary disease (COPD) report an unpleasant respiratory sensation at rest, which is further amplified by adoption of a supine position (orthopnoea). The mechanisms of this acute symptomatic deterioration are poorly understood.Sixteen patients with advanced COPD and a history of orthopnoea and 16 age- and sex-matched healthy controls underwent pulmonary function tests (PFTs) and detailed sensory-mechanical measurements including inspiratory neural drive (IND) assessed by diaphragm electromyography (EMG), oesophageal pressure ( ) and gastric pressure ( ), in both sitting and supine positions.
View Article and Find Full Text PDFBackground: COPD is associated with nighttime respiratory symptoms, poor sleep quality, and increased risk of nocturnal death. Overnight deterioration of inspiratory capacity (IC) and FEV have been documented previously. However, the precise nature of this deterioration and mechanisms by which evening bronchodilation may mitigate this occurrence have not been studied.
View Article and Find Full Text PDFThis randomized, double-blind, crossover study aimed to determine if acute treatment with inhaled bronchodilators, by improving regional lung hyperinflation and ventilation distribution, would reduce dead space-to-tidal volume ratio (V/V); thus contributing to improved exertional dyspnea in COPD. Twenty COPD patients (FEV = 50 ± 15% predicted; mean ± SD) performed pulmonary function tests and symptom-limited constant-work rate exercise at 75% peak-work rate (with arterialized capillary blood gases) after nebulized bronchodilator (BD; ipratropium 0.5mg + salbutamol 2.
View Article and Find Full Text PDFDyspnea and exercise limitation are among the most common symptoms experienced by patients with various chronic lung diseases and are linked to poor quality of life. Our understanding of the source and nature of perceived respiratory discomfort and exercise intolerance in chronic lung diseases has increased substantially in recent years. These new mechanistic insights are the primary focus of the current review.
View Article and Find Full Text PDFWe developed an automated, non-invasive method to detect real-time cardiac contraction in post-larval (1.1-1.7 mm length), juvenile oysters (i.
View Article and Find Full Text PDFPulmonary neuroepithelial bodies are polymodal sensors widely distributed within the airway mucosa of mammals and other species. Neuroepithelial body cells store and most likely release serotonin and peptides as transmitters. Neuroepithelial bodies have a complex innervation that includes vagal sensory afferent fibers and dorsal root ganglion fibers.
View Article and Find Full Text PDFCurr Opin Pharmacol
June 2011
The neuroepithelial bodies (NEB) of the intrapulmonary airways (AW) are multimodal AW sensors responding to a variety of stimuli including hypoxia, hypercarbia, and mechanical stretch. NEBs are richly innervated by a diverse population of mostly vagal afferent nerve fibers and owing to their early developmental maturation may be especially important during the perinatal period. This article reviews recent findings of NEB functional morphology and innervation, and postulates a role in the generation of dyspnea.
View Article and Find Full Text PDF