J Signal Process Syst
May 2012
Functional magnetic resonance imaging (fMRI) data are originally acquired as complex-valued images, which motivates the use of complex-valued data analysis methods. Due to the high dimension and high noise level of fMRI data, order selection and dimension reduction are important procedures for multivariate analysis methods such as independent component analysis (ICA). In this work, we develop a complex-valued order selection method to estimate the dimension of signal subspace using information-theoretic criteria.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2011
In independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data, extracting a large number of maximally independent components provides a detailed functional segmentation of brain. However, such high-order segmentation does not establish the relationships among different brain networks, and also studying and classifying components can be challenging. In this study, we present a multidimensional ICA (MICA) scheme to achieve automatic component clustering.
View Article and Find Full Text PDFIndependent component analysis (ICA) has proven quite useful for the analysis of real world datasets such as functional resonance magnetic imaging (fMRI) data, where the underlying nature of the data is hard to model. It is particularly useful for the analysis of fMRI data in its native complex form since very little is known about the nature of phase. Phase information has been discarded in most analyses as it is particularly noisy.
View Article and Find Full Text PDFWe present a novel integrated wavelet-domain based framework (w-ICA) for 3-D denoising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional denoising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the denoised wavelet coefficients corresponding to the three viewing geometries for each sub-band.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) data and electroencephalography (EEG) data provide complementary spatio-temporal information about brain function. Methods to couple the relative strengths of these modalities usually involve two stages: first forming a feature set from each dataset based on one criterion followed by exploration of connections among the features using a second criterion. We propose a data fusion method for simultaneously acquired fMRI and EEG data that combines these steps using a single criterion for finding the cross-modality associations and performing source separation.
View Article and Find Full Text PDFTypically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities.
View Article and Find Full Text PDFAlthough functional magnetic resonance imaging (fMRI) data are acquired as complex-valued images, traditionally most fMRI studies only use the magnitude of the data. FMRI analysis in the complex domain promises to provide more statistically significant information; however, the noisy nature of the phase poses a challenge for successful study of fMRI by complex-valued signal processing algorithms. In this paper, we introduce a physiologically motivated de-noising method that uses phase quality maps to successfully identify and eliminate noisy areas in the fMRI data so they can be used in individual and group studies.
View Article and Find Full Text PDFWe present a novel application of independent component analysis (ICA), an exploratory data analysis technique, to two-dimensional electrophoresis (2-DE) gels, which have been used to analyze differentially expressed proteins across groups. Unlike currently used pixel-wise statistical tests, ICA is a data-driven approach that utilizes the information contained in the entire gel data. We also apply ICA on wavelet-transformed 2-DE gels to address the high dimensionality and noise problems typically found in 2-DE gels.
View Article and Find Full Text PDFIndependent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task.
View Article and Find Full Text PDF