Publications by authors named "Nicoll-Griffith D"

Described here are synthesis and biological evaluations of diversified groups of over 57 ertapenem prodrugs which include alkyl, methylenedioxy, carbonate, cyclic carbonate, carbamate esters, and esters containing active transport groups (e.g., carboxyl, amino acid, fatty acids, cholesterol) and macrocyclic lactones linking the two carboxyl groups.

View Article and Find Full Text PDF

Carbapenems are intravenous lifesaving hospital antibiotics. Once patients leave the hospital, they are sent home with antibiotics other than carbapenems since they cannot be administered orally due to lack of oral absorption primarily because of very highly polarity. A prodrug approach is a bona fide strategy to improve oral absorption of compounds.

View Article and Find Full Text PDF

The cysteine protease cruzipain is essential for the viability, infectivity, and virulence of Trypanosoma cruzi, the causative agent of Chagas disease. Thus, inhibitors of cruzipain are considered promising anti-T. cruzi chemotherapeutic agents.

View Article and Find Full Text PDF

A major pathway of elimination of the prostaglandin D2 receptor 1 antagonist laropiprant in humans is by uridine diphosphate-glucuronosyltransferase (UGT)-mediated biotransformation. In this study, liver and kidney relative activity factors were developed for UGT1A1, 1A9 and 2B7 to allow for in vitro-in vivo extrapolation of intrinsic clearance data to whole organ clearance using recombinant human UGT isoforms applying this to laropiprant as a model substrate. The total body metabolic clearance of laropiprant determined using this approach (5.

View Article and Find Full Text PDF

Introduction: The roles of cysteine protease (CP) enzymes in the biochemistry and infectivity of the three trypanosomal parasitic infections, Chagas' disease, leishmaniasis and human African trypanosomiasis, which have been elucidated over the last three decades are summarized. Inhibitors of these enzymes, which act through trapping the active site cysteine with an electrophilic warhead, hold huge potential as therapeutic agents but the promise of these has yet to be realized in clinical studies. The article addresses aspects that ought to be considered in order to develop orally active CP inhibitors that are safe and effective therapies for trypanosomiasis.

View Article and Find Full Text PDF

The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity.

View Article and Find Full Text PDF

Odanacatib is a potent cathespin K inhibitor that is being developed as a novel therapy for osteoporosis. The disposition and metabolism of odanacatib were evaluated in rats, dogs, and rhesus monkeys after intravenous and oral administration of [¹⁴C]odanacatib. Odanacatib was characterized by low systemic clearance in all species and by a long plasma half-life in monkeys (18 h) and dogs (64 h).

View Article and Find Full Text PDF

Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease is described. The identified inhibitors bearing an amino nitrile warhead in P1 exhibit low nanomolar in vitro potency against cruzipain. Further SAR in P2 portion led to the identification of compounds, such as 26, that have a unique selectivity profile against other cysteine proteases and offering new opportunities for safer treatment of Chagas disease.

View Article and Find Full Text PDF

MK-0674 is a potent and selective cathepsin K inhibitor from the same structural class as odanacatib with a comparable inhibitory potency profile against Cat K. It is orally bioavailable and exhibits long half-life in pre-clinical species. In vivo studies using deuterated MK-0674 show stereoselective epimerization of the alcohol stereocenter via an oxidation/reduction cycle.

View Article and Find Full Text PDF

Substituted 8-arylquinoline analogs bearing alkyl-linked side chain were identified as potent inhibitors of type 4 phophodiesterase. These compounds address the potential liabilities of the clinical candidate L-454560. The pharmacokinetic profile of the best analogs and the in vivo efficacy in an ovalbumin-induced bronchoconstriction assay in conscious guinea pigs are reported.

View Article and Find Full Text PDF

Odanacatib is a potent, selective, and neutral cathepsin K inhibitor which was developed to address the metabolic liabilities of the Cat K inhibitor L-873724. Substituting P1 and modifying the P2 side chain led to a metabolically robust inhibitor with a long half-life in preclinical species. Odanacatib was more selective in whole cell assays than the published Cat K inhibitors balicatib and relacatib.

View Article and Find Full Text PDF

The structure-activity relationship of a novel series of 8-biarylquinolines acting as type 4 phosphodiesterase (PDE4) inhibitors is described herein. Prototypical compounds from this series are potent and non-selective inhibitors of the four distinct PDE4 (IC(50)<10 nM) isozymes (A-D). In a human whole blood in vitro assay, they inhibit (IC(50)<0.

View Article and Find Full Text PDF

This paper describes the development of a high-throughput method for the analysis of cytochrome P450 (CYP) inhibition assay incubation samples using laser diode thermal desorption interfaced with atmospheric pressure chemical ionization mass spectrometry (LDTD-APCI-MS). Data for the CYP isoforms 3A4, 2D6, 2C9, and 1A2 from competitive inhibition assays are shown. The potential for inhibition of the CYP isoforms was measured by monitoring the level of the metabolites 6beta-hydroxytestosterone (3A4), dextrorphan (2D6), 4'-hydroxydiclofenac (2C9), and acetaminophen (1A2) formed in the presence of drug candidates using an eight-point titration.

View Article and Find Full Text PDF
Article Synopsis
  • A group of DP1 receptor antagonists from an indole series was found to covalently bind to proteins in liver microsomes from both rats and humans.
  • Research indicated that strong electron-withdrawing groups could prevent this covalent binding, leading to the development of a particular compound, MK-0524.
  • Further tests in liver cells and live subjects revealed that the formation of a metabolite called acyl-glucuronide did not result in covalent binding to proteins.
View Article and Find Full Text PDF

Metabolite identification studies involve the detection and structural characterization of the biotransformation products of drug candidates. These experiments are necessary throughout the drug discovery and development process. The use of high-resolution chromatography and high-resolution mass spectrometry together with data processing using mass defect filtering is described for in vitro and in vivo metabolite identification studies.

View Article and Find Full Text PDF

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats.

View Article and Find Full Text PDF

Metabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies.

View Article and Find Full Text PDF

Introduction: Quantification of cytochrome P450 is a major issue in the development of new drugs. Different assays have been reported, but few are very selective for the 3A isoform or cytochrome P450. The benzyloxy-substituted lactone cyclooxygenase-2 inhibitor 3-[(3, 4-difluorobenzyl)oxy]-5,5-dimethyl-4-[4-methylsulfonyl) phenyl] furan-2(5H)-one has recently been used successfully to probe isoform 3A of cytochrome P450 in the liver.

View Article and Find Full Text PDF

L-454,560 is a potent phosphodiesterase 4 (PDE4) inhibitor which was identified as a development candidate for the treatment of asthma and chronic obstructive pulmonary disease (COPD). As part of the discovery of this compound, interspecies in vitro metabolism data was generated using liver microsomes and hepatocytes in order to understand the metabolic fate of the compound. In microsomes, metabolism of the 3-methyl-1,2,4-oxadiazole ring was the predominant pathway observed, including ring cleavage.

View Article and Find Full Text PDF

The discovery and SAR of a new series of substituted 8-arylquinoline PDE4 inhibitors are herein described. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of emesis to efficacy in several animal models. Typical optimized compounds from this series are potent inhibitors of PDE4 (IC(50)<1nM) and also of LPS-induced TNF-alpha release in human whole blood (IC(50)<0.

View Article and Find Full Text PDF

Discovery stage studies that address issues of absorption, distribution, metabolism and excretion (ADME) are vital for lead optimization resulting in new drug candidates. Often pharmacokinetics (PK) is assessed in these experiments without regard for the metabolism of the compound or the potential for metabolites to circulate in vivo. This work presents a strategy for drug level determination and detection of metabolites using dried blood spots for sample collection.

View Article and Find Full Text PDF

The benzyloxy-substituted lactone cyclooxygenase-2 inhibitor DFB [3-[(3,4-difluorobenzyl)oxy]-5,5-dimethyl-4-[4-(methylsulfonyl)phenyl]furan-2(5H)-one] is metabolized in human and rat liver microsomal incubations and hepatocytes to a fluorescent metabolite, DFH [3-hydroxy-5,5-dimethyl-4-[4-(methylsulfonyl)phenyl]furan-2(5H)-one]. This process is CYP3A-mediated in both species, as demonstrated by incubations with recombinant CYP3A enzymes and experiments with inhibitory antibodies. Measurement of DFH fluorescence can be used as a rapid readout of CYP3A activity following microsomal or cultured hepatocyte incubations.

View Article and Find Full Text PDF

Protein covalent labeling can be an undesirable property of compounds being studied in drug discovery programs. Identifying such compounds relies on the use of radiolabeled material, which requires an investment in time and resources not typically expended until later in the discovery process. We describe the detection of covalent adducts to cytochrome P450 3A4, the most abundant and important P450 from a human and drug discovery viewpoint, using liquid chromatography mass spectrometry.

View Article and Find Full Text PDF

It is generally accepted that there is neither a well-defined nor a consistent link between the formation of drug-protein adducts and organ toxicity. Because the potential does exist, however, for these processes to be causally related, the general strategy at Merck Research Laboratories has been to minimize reactive metabolite formation to the extent possible by appropriate structural modification during the lead optimization stage. This requires a flexible approach to defining bioactivation issues in a variety of metabolism vectors and typically involves the initial use of small molecule trapping agents to define the potential for bioactivation.

View Article and Find Full Text PDF

The success of cryopreservation of isolated hepatocytes with existing methodologies is assessed with respect to the retentivity of cell integrity/viability (defined by trypan blue) and metabolic activities upon thawing in comparison to those of freshly prepared cells. But the ability of the cryopreserved cells to transport xenobiotics relative to that of freshly prepared cells has not been investigated. In this study, we optimized our previous methodology for cryopreservation and evaluated the metabolism and transport of thawed hepatocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsgpcivstjpi3vdtlod39g80uer0gcppr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once