Publications by authors named "Nicolette O'Donnell"

High-throughput screening has led to the identification of small-molecule blockers of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, but the structural basis of blocker binding remains to be defined. We developed molecular models of the CFTR channel on the basis of homology to the bacterial transporter Sav1866, which could permit blocker binding to be analyzed in silico. The models accurately predicted the existence of a narrow region in the pore that is a likely candidate for the binding site of an open-channel pore blocker such as N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101), which is thought to act by entering the channel from the extracellular side.

View Article and Find Full Text PDF

Deletion of Phe508 from cystic fibrosis transmembrane conductance regulator (CFTR) results in a temperature-sensitive folding defect that impairs protein maturation and chloride channel function. Both of these adverse effects, however, can be mitigated to varying extents by second-site suppressor mutations. To better understand the impact of second-site mutations on channel function, we compared the thermal sensitivity of CFTR channels in Xenopus oocytes.

View Article and Find Full Text PDF

We developed molecular models for the cystic fibrosis transmembrane conductance regulator chloride channel based on the prokaryotic ABC transporter, Sav1866. Here we analyze predicted pore geometry and side-chain orientations for TM3, TM6, TM9, and TM12, with particular attention being paid to the location of the rate-limiting barrier for anion conduction. Side-chain orientations assayed by cysteine scanning were found to be from 77 to 90% in accord with model predictions.

View Article and Find Full Text PDF