Horse Liver Alcohol Dehydrogenase (HLADH) is an extensively studied enzyme isolated from equine liver tissue, and holds a central role in numerous enzymatic processes, underscoring the need for thorough investigation. This study delves into the kinetic behavior and structural dynamics of HLADH, shedding light on complex mechanisms governing its catalytic activity and interactions with the cofactor. Notably, deviations from traditional Michaelis-Menten kinetics are observed, manifesting as a slowdown in catalytic rate under high NADH concentrations.
View Article and Find Full Text PDFIn the field of stone conservation, the removal of iron stains is one of the most challenging issues due to the stability and low solubility of the ferrous species. In the present paper, three different chitosan-based hydrogels added with acetic, oxalic or citric acids are applied on different lithotypes, i.e.
View Article and Find Full Text PDFThe peculiar physicochemical features of deep eutectic solvents (DESs), in particular their tunability, make them ideal media for various applications. Despite their ability to solubilize metal oxides, their use as rust removers from valuable substrates has not yet been thoroughly investigated. In this study, we chose three known DESs, consisting of choline chloride and acetic, oxalic or citric acid for evaluating their ability to remove corrosion products from a cellulose-based material as linen fabric and two different lithotypes, as travertine and granite.
View Article and Find Full Text PDFHorse Liver Alcohol Dehydrogenase (HLADH) has been immobilized on calcium-alginate beads and used for both oxidation and reduction reactions. To avoid swelling of the beads and their subsequent breakage, calcium ions were added to both reaction and storage solutions, allowing the beads to maintain the initial structural features. The techniques used for this purpose revealed that 2 mM Ca is the optimal concentration, which does not significantly change the weight of the beads, the amount of water in them, and their external and internal structure.
View Article and Find Full Text PDFAn important field of research is devoted to the development of innovative, sustainable, and safe methodologies to counteract biodeterioration of stone monuments due to the growth of microbial communities. However, besides the biocide's efficacy, it is crucial to consider the features of substrates on which biocides must be applied, to define the so-called bioreceptivity of the lithic faces. In this research five different lithotypes, namely Lecce stone, Travertine, Peperino, Serena stone, and Granite, have been used as substrates for the growth of cyanobacterial biofilms.
View Article and Find Full Text PDFLipase B (CALB) is a paradigm for the family of lipases. At pH 7, the optimal pH for catalysis, the protonation state of an aspartic acid of the active site (Asp134) could not be conclusively assigned. In fact, the pK estimate provided by a widely used computational tool, namely PropKa, that predicts pK values of ionizable groups in proteins based on the crystallographic structure, is only slightly above 7 (pK = 7.
View Article and Find Full Text PDFIn this work, chitosan-succinic acid membranes were prepared by casting method and the physicochemical and mechanical properties of non-neutralized and neutralized with NaOH films were compared. Mechanical strength, flexibility, thermal stability and water-vapor permeability of chitosan membranes are significantly improved after neutralization. These improvements could be partly ascribed to the use of a dicarboxylic acid, which decreases the spacing between chitosan chains as a consequence of ionic crosslinking.
View Article and Find Full Text PDFIn this work, we present the effects of ionic and zwitterionic surfactants on the hydrolytic activity of Candida rugosa lipase (CRL), one of the most important and widely used microbial lipases. A series of amine N-oxide surfactants was studied to explore the relationship between their molecular structures and their effect on catalytic properties of CRL. These zwitterionic amphiphiles are known for their ability to form aggregates that can increase their size, thanks to a sphere-rod transition, without any additive.
View Article and Find Full Text PDFWe report the use of the unimolecular, spontaneous decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, 6-NBIC, as kinetic probe to investigate the properties of aqueous solutions of a series of ILs, 1-alkyl-3-methyl imidazolium derivatives. The ILs are denoted as [C(n)mim][X], where n indicates the number of carbon atoms in 1-alkyl chain. We studied [C(4)mim][X], with X=Cl(-), Br(-), and BF(4)(-), and the surface-active ILs, SAILs, [C(12)mim][Cl], [C(12)mim][Br], and [C(16)mim][Br].
View Article and Find Full Text PDFModel coniferyl alcohol lignin (the so-called dehydrogenative polymerisate, DHP) was produced in water under homogeneous conditions guaranteed by the presence of a micellised cationic surfactant. A complete study of the activity of the enzymatic system peroxidase/H(2)O(2) under our reaction conditions was reported and all the reaction products up to the pentamer were characterised by (1)H NMR spectroscopy and ESI mass spectrometry. Our system, and the molecules that have been generated in it, represent a closer mimicry of the natural microenvironment since an enzyme, under micellar conditions, reproduces the cell system better than in buffer alone.
View Article and Find Full Text PDFAn investigation of temperature effects upon first-order rate constants in the micellar pseudophase for decarboxylation of 6-nitrobenzisoxazole-3-carboxylate (6-NBIC) and its 5-methyl derivative (6-NBIC-5-Me) was carried out. Surfactants used were cationic cetyltrialkylammonium bromide with alkyl = methyl (CTABr), ethyl (CTEABr), n-propyl (CTPABr), and n-butyl (CTBABr). The investigation shows that micelles speed up reactions by decreasing enthalpies of activation.
View Article and Find Full Text PDFThe effects of ethanol on the critical micellar concentration (cmc) and the rates of decarboxylation of 6-nitrobenzisoxazole-3-carboxylate (6-NBIC) have been investigated in aqueous cationic surfactants of the cetyltrialkylammonium family with bromide [CT(R)ABr], chloride [CT(R)ACl], and nitrate [CT(R)ANO3] counterions, and methyl (CTAX), n-propyl (CTPAX), and n-butyl (CTBAX) as the head group alkyl moieties. Effects upon cmc and reactivity are similar, featuring a break at the ethanol mole fraction, x(EtOH), of ca. 0.
View Article and Find Full Text PDFA new class of cationic surfactants containing the heterocyclic piperazinium ring in their covalent structure was prepared; cetyldialkylpiperazinium halides, CRPX, with alkyl=Me (CMPX), Et (CEPX), n-Pr (CPPX), and with halide=Br and Cl. They were characterized by measures of critical micellar concentration, cmc, and ionization degree, alpha, and also by use of the decarboxylation of 6-nitrobenzisoxazole-3-carboxylate as a kinetic probe to investigate the properties of the microinterface they provide in aqueous solutions. The pseudophase kinetic treatment fails to fit the data at high [surfactant], which show anomalies with abrupt increase in k(obs), especially for CEPX and CPPX.
View Article and Find Full Text PDFChloroperoxidase (CPO) is one of the most versatile of the heme peroxidase enzymes for synthetic applications. Despite the potential use of CPO, commercial processes have not been developed because of the low water solubility of many organic substrates of synthetic interest and the limited stability due to inactivation by H(2)O(2). CPO catalytic properties have been studied in aqueous solutions in the presence of short-chain poly(ethylene glycol)s (PEGs), and the sulfoxidation of thioanisole, as model substrate, has been investigated.
View Article and Find Full Text PDFLignin, a resistant cell-wall constituent of all vascular plants that consists of ether and carbon-linked methoxyphenols, is still far from being structurally described in detail. The main problem in its structural elucidation is the difficulty of isolating lignin from other wood components without damaging lignin itself. Furthermore, the high number and variegated forms of linkages that occur between the monomeric units and the chemical resistance of certain ether bonds limit the extent to which analytical and degradation procedures can be used to elucidate the lignin structure.
View Article and Find Full Text PDFThe catalytic activity of alpha-chymotrypsin on a model and a peptide substrate, in the supramolecular system "enzyme-surfactant" in water solution, has been studied by electrospray ionization mass spectrometry. Hydrolysis of N-succinyl-L-phenylalanine p-nitroanilide as the model compound, catalysed by alpha-chymotrypsin in the presence of monomeric cetyltributylammonium bromide, has been followed by UV and ESI-MS detection. Kinetic data, which are essentially identical independent of their determination techniques, show a twelve fold improvement of the enzyme catalytic efficiency when compared with the reaction carried out in the absence of the additive.
View Article and Find Full Text PDFA strictly coordinate sequence of radical and ionic steps appears to be the mechanism by which oligolignols are generated. A synthetic lignin was produced under micellar conditions [Eq. (1)], and the beginning of the polymerization process was studied by electrospray ionization mass spectrometry.
View Article and Find Full Text PDF