MoCA is a bi-modal dataset in which we collect Motion Capture data and video sequences acquired from multiple views, including an ego-like viewpoint, of upper body actions in a cooking scenario. It has been collected with the specific purpose of investigating view-invariant action properties in both biological and artificial systems. Besides that, it represents an ideal test bed for research in a number of fields - including cognitive science and artificial vision - and application domains - as motor control and robotics.
View Article and Find Full Text PDFIn the industry of the future, so as in healthcare and at home, robots will be a familiar presence. Since they will be working closely with human operators not always properly trained for human-machine interaction tasks, robots will need the ability of automatically adapting to changes in the task to be performed or to cope with variations in how the human partner completes the task. The goal of this work is to make a further step toward endowing robot with such capability.
View Article and Find Full Text PDFShearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities, such as edges and corners at multiple scales even in the presence of a large quantity of noise. In this paper, we consider blob-like features in the shearlets framework. We derive a measure, which is very effective for blob detection, and, based on this measure, we propose a blob detector and a keypoint description, whose combination outperforms the state-of-the-art algorithms with noisy and compressed images.
View Article and Find Full Text PDFIn this paper, we propose a sparse coding approach to background modeling. The obtained model is based on dictionaries which we learn and keep up to date as new data are provided by a video camera. We observe that, without dynamic events, video frames may be seen as noisy data belonging to the background.
View Article and Find Full Text PDF