Publications by authors named "Nicoletta Marzocchi"

Brief episodes of atrial fibrillation (AF) may evolve into longer AF episodes increasing the chances of thrombus formation, stroke, and death. Classical methods for AF detection investigate rhythm irregularity or P-wave absence in the ECG, while deep learning approaches profit from the availability of annotated ECG databases to learn discriminatory features linked to different diagnosis. However, some deep learning approaches do not provide analysis of the features used for classification.

View Article and Find Full Text PDF

Brain control of prehension is thought to rely on two specific brain circuits: a dorsomedial one (involving the areas of the superior parietal lobule and the dorsal premotor cortex) involved in the transport of the hand toward the object and a dorsolateral one (involving the inferior parietal lobule and the ventral premotor cortex) dealing with the preshaping of the hand according to the features of the object. The present study aimed at testing whether a pivotal component of the dorsomedial pathway (area V6A) is involved also in hand preshaping and grip formation to grasp objects of different shapes. Two macaque monkeys were trained to reach and grasp different objects.

View Article and Find Full Text PDF

Reach-to-grasp actions involve several components of forelimb movements needed to direct the hand toward the object to be grasped, and to orient and preshape the hand according to the object axis and shape. Area V6A, which represents a node of the dorsomedial frontoparietal circuits, has so far been implicated only in directing the arm toward different spatial locations. The present results confirm this finding and demonstrate, for the first time, that during reach-to-grasp, V6A neurons are also modulated by the orientation of the hand.

View Article and Find Full Text PDF

Parietal area V6A contains neurons modulated by the direction of gaze as well as neurons able to code the direction of arm movement. The present study was aimed to disentangle the gaze effect from the effect of reaching activity upon single V6A neurons. To this purpose, we used a visuomotor task in which the direction of arm movement remained constant while the animal changed the direction of gaze.

View Article and Find Full Text PDF

We recorded neural activity from the medial parieto-occipital area V6A while three monkeys performed an instructed-delay reaching task in the dark. Targets to be reached were in different spatial positions. Neural discharges were recorded during reaching movements directed outward from the body (towards visual objects), during the holding phase (when the hand was on the target) and during inward movements of the hand towards the home button (which was near the body and outside the field of view).

View Article and Find Full Text PDF