Publications by authors named "Nicoletta Ditaranto"

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation.

View Article and Find Full Text PDF

Treatment of primary bone malignancies comprises surgery, radiotherapy, chemotherapy, and analgesics. Platinum-based chemotherapeutics, such as cisplatin, are commonly used for the treatment of bone cancer but, despite their success, outcomes are limited by toxicity and resistance. Recently, dinuclear Pt complexes with a bridging geminal bisphosphonate ligand proved to be endowed with selective accumulation in bone tumors or metastases leading to improved efficacy and reduced systemic toxicity.

View Article and Find Full Text PDF

One of the crucial challenges of our time is to effectively use metal and metal oxide nanoparticles (NPs) as an alternative way to combat drug-resistant infections. Metal and metal oxide NPs such as Ag, AgO, Cu, CuO, CuO, and ZnO have found their way against antimicrobial resistance. However, they also suffer from several limitations ranging from toxicity issues to resistance mechanisms by complex structures of bacterial communities, so-called biofilms.

View Article and Find Full Text PDF

The development of ultrasensitive analytical detection methods for organophosphorus pesticides such as dimethoate (DMT) plays a key role in healthy food production. DMT is an inhibitor of acetylcholinesterase (AChE), which can lead to the accumulation of acetylcholine and result in symptoms related to the autonomous and central nervous systems. Herein, we report the first spectroscopic and electrochemical study on template removal after an imprinting process from a polypyrrole-based molecularly imprinted polymer (PPy-MIP) film for the detection of DMT.

View Article and Find Full Text PDF

Unlike other antimicrobial agents, Ag-based composites are stable and currently widely used as broad spectral additives, fighting microbial biofilms and other biological threats. The goal of the present study is to develop a green, multifunctional, and robust antibiofilm water-insoluble coating, inhibiting histamine-producing biofilms. Herein, laser-ablated Ag NPs (L-Ag NPs) were incorporated into and onto a montmorillonite (MMT) surface layer with a simple wet chemical method, provided that the electrostatic interaction between L-Ag NPs and MMT clay led to the formation of L-Ag/MMT nanoantimicrobials (NAMs).

View Article and Find Full Text PDF

Kiteplatin, [PtCl(-1,4-DACH)] (DACH = diaminocyclohexane), contains an isomeric form of the oxaliplatin diamine ligand -1,2-DACH and has been proposed as a valuable drug candidate against cisplatin- and oxaliplatin-resistant tumors, in particular, colorectal cancer. To further improve the activity of kiteplatin, it has been transformed into a Pt(IV) prodrug by the addition of two benzoato groups in the axial positions. The new compound, ,,-[PtCl(OBz)(-1,4-DACH)] (; OBz = benzoate), showed cytotoxic activity at nanomolar concentration against a wide panel of human cancer cell lines.

View Article and Find Full Text PDF

All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure.

View Article and Find Full Text PDF
Article Synopsis
  • This research utilizes both electrochemical methods and X-ray photoelectron spectroscopy (XPS) to study how self-assembled monolayers (SAMs) reorganize on electrode surfaces when exposed to an electric field, focusing on 3-mercaptopropionic acid (3MPA) SAMs on gold electrodes.
  • By optimizing the activation time (15/20 min instead of 2 hours) using a specific chemical mixture (EDC-NHSS), the study finds that shorter activation enhances reaction yields and influences the structural rearrangement of SAMs under electrical influence.
  • The findings demonstrate that better interchain interactions and surface coverage of the 3MPA SAM contribute significantly to the high performance of bioelectronic devices, enabling
View Article and Find Full Text PDF

Six enantiomerically pure, oxaliplatin-like, platinum compounds (two platinum(II) and four platinum(IV)), all containing unsaturated cyclic diamine -1,2-diamino-4-cyclohexene (DACHEX) as a substitute for the -1,2-diaminocyclohexane used in oxaliplatin, were investigated. The complexes were characterized by elemental analyses, ESI-MS, and H-NMR spectroscopy. For the four Pt(IV) complexes the electrochemical redox behaviour, investigated by cyclic voltammetry, showed that all complexes possess reduction potentials suitable for activation .

View Article and Find Full Text PDF

MnO -TiO catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH-SCR (selective catalytic reduction) of NO have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount.

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery.

View Article and Find Full Text PDF

The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents.

View Article and Find Full Text PDF

The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP's stabilizer, but also through the application of a suitable magnetic field.

View Article and Find Full Text PDF

In the present study we have studied the incorporation and release of selenite ions (SeO) in hydroxyapatite nanoparticles for the treatment of bone tumors. Two types of selenium-doped hydroxyapatite (HASe) nanoparticles (NPs) with a nominal Se/(P + Se) molar ratio ranging from 0.01 up to 0.

View Article and Find Full Text PDF

Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake.

View Article and Find Full Text PDF
Article Synopsis
  • - Since 2004, researchers have been developing nanoantimicrobials and recently began exploring nanoantivirals in response to the COVID-19 pandemic.
  • - The letter emphasizes the vital role that nanomaterials can play in combating the virus, highlighting the need for enhanced personal protective equipment and antiviral coatings.
  • - The authors advocate for increased investment in nanomaterials technology to address both current and future global health crises, inviting feedback from the scientific community.
View Article and Find Full Text PDF

Six platinum(IV) compounds derived from an oxaliplatin analogue containing the unsaturated cyclic diamine -1,2-diamino-4-cyclohexene (DACHEX), in place of the 1,2-diaminocyclohexane, and a range of axial ligands, were synthesized and characterized. The derivatives with at least one axial chlorido ligand demonstrated solvent-assisted photoreduction. The electrochemical redox behavior was investigated by cyclic voltammetry; all compounds showed reduction potentials suitable for activation in vivo.

View Article and Find Full Text PDF

The rapid spreading of resistance among common bacterial pathogens towards the misused antibiotics/disinfectant agents has drawn much attention worldwide to bacterial infections. In light of this, the present work aimed at the realization of core-shell nanoparticles possessing remarkable antimicrobial properties thanks to the synergistic action of the metal core and the disinfectant shell. Copper nanoparticles stabilized by benzalkonium chloride were prepared, characterized, and implemented in poly-vinyl-methyl ketone to obtain nanoantimicrobial composite coatings.

View Article and Find Full Text PDF

This work highlights the importance of the hydrophilicity of a catalyst's active sites on an oxygen reduction reaction (ORR) through an electrochemical and physico-chemical study on catalysts based on nitrogen-modified carbon doped with different metals (Fe, Cu, and a mixture of them). BET, X-ray Powder Diffraction (XRPD), micro-Raman, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and hydrophilicity measurements were performed. All synthesized catalysts are characterized not only by a porous structure, with the porosity distribution centered in the mesoporosity range, but also by the presence of carbon nanostructures.

View Article and Find Full Text PDF

Aluminosilicate glasses are considered to follow the Al-avoidance principle, which states that Al-O-Al linkages are energetically less favorable, such that, if there is a possibility for Si-O-Al linkages to occur in a glass composition, Al-O-Al linkages are not formed. The current paper shows that breaching of the Al-avoidance principle is essential for understanding the distribution of network-forming AlO and SiO structural units in alkaline-earth aluminosilicate glasses. The present study proposes a new modified random network (NMRN) model, which accepts Al-O-Al linkages for aluminosilicate glasses.

View Article and Find Full Text PDF

Bioconjugated gold surfaces constitute interesting platforms for biosensing applications. The immobilization of antibodies such as anti-immunoglobulin G and M (anti-IgG and anti-IgM) on gold electrodes via self-assembled monolayers (SAMs) is here studied as a model system for further immunoassays development. The biolayer is characterized by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), a dedicated thin-film transistor (TFT)-based platform and electrochemical surface plasmon resonance (EC-SPR).

View Article and Find Full Text PDF

Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices.

View Article and Find Full Text PDF

The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements.

View Article and Find Full Text PDF