Theoretical calculations at the B3LYP, MP2, and CCSD(T) levels of theory disclose the conceivable existence of cationic noble gas hydrides containing two Ng atoms. These species have a general formula of HNgFNgH(+) (Ng = He-Xe), and are the cationic counterparts of the neutral HNgF. The optimized geometries, harmonic frequencies, and bonding properties point to ion-dipole complexes between a fluoride anion and two covalent H-Ng(+) cations, best formulated as (H-Ng(+))(2)F(-).
View Article and Find Full Text PDFNoble gas anions of general formula FNgBN- (Ng = He-Xe) have been investigated by MP2, coupled-cluster, and multireference-CI calculations with correlation-consistent basis sets. These species reside in deep wells on the singlet potential energy surface and are thermodynamically stable with respect to the loss of F, F-, BN, and BN-. They are unstable with respect to Ng + FBN-, but at least for Ng = Ar, Kr, and Xe, the involved energy barriers are high enough to suggest their conceivable existence as metastable species.
View Article and Find Full Text PDFAb initio calculations at the MP2 and CCSD(T) levels of theory disclose the conceivable existence of neutral complexes containing up to four helium atoms. These species are formally obtained by replacing the hydrogen atoms of parent molecules such as CH(4), SiH(4), NH(3), PH(3), H(2)O, H(2)S, C(2)H(2), C(2)H(4), and C(6)H(6) with -NBeHe moieties, which behave as monovalent functional groups containing helium. The geometries and vibrational frequencies of these M(NBeHe)(n) (n>1; M=central moiety) polyhelium complexes have been investigated at the MP2(full)/6-31G(d) level of theory, and their stability with respect to the loss of helium atom(s) has been evaluated by means of single-point calculations at the CCSD(T)/6-311G(d,p) level of theory.
View Article and Find Full Text PDFThe structure, harmonic frequencies, enthalpies of formation, and dissociation energies of the GeF(n)(+) cations (n = 1-3) and of their neutral counterparts GeF(n) have been investigated at the MP2 and CCSD(T) levels of theory and discussed in connection with previous experimental and theoretical data. The CCSD(T,full)/cc-pVTZ-optimized geometries and MP2(full)/6-311G(d) harmonic frequencies are 1.744 A and 668.
View Article and Find Full Text PDFThe structure and stability of various HCN2+ isomeric structures have been investigated at the complete active space SCF (CASSCF) and multireference-configuration interaction [MR-Cl-SD(Q)] levels of theory with the 6-31G(d) and 6-311G(d,p) basis sets. The investigated species include the singlet (S) and triplet (T) open-chain H-N-C-N+ ions 1S, 1S', and 1T, the open-chain H-C-N-N+ ions 2S, 2S', and 2T, the HC-N2+ cyclic structures 3S and 3T, and the HN-CN+ cyclic structures 4S and 4T. All these species have been identified as true energy minima on the CASSCF(8,7)/6-31G(d) potential energy surface, and their optimised geometries, refined at the CASSCF(8,8)/6-31G(d) level of theory, have been used to perform single point calculations at the [MR-Cl-SD(Q]/6-311G(d,p) computational level.
View Article and Find Full Text PDF