One of the useful features of 3D-printed specimens of recycled polyethylene terephthalate glycol (R-PETG) is the ability to repetitively develop free recovery as well as the work-generating, shape-memory effect. This behavior is enabled by the R-PETG's capacity to stiffen during cooling, thus allowing for a new temporary shape to be induced. Aiming to devise an explanation for the polymer's stiffening, in this study, the variation in some of the R-PETG's parameters during cooling are emphasized and discussed.
View Article and Find Full Text PDFIron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28-32 wt %) Mn and (4-6 wt %) Si with the addition of 1 and 2 wt % Ag were obtained using levitation induction melting equipment. Addition of silver to the FeMnSi alloy was proposed in order to enhance its antiseptic property.
View Article and Find Full Text PDFBiodegradable metallic materials are increasingly gaining ground in medical applications. Zn-based alloys show a degradation rate between those recorded for Mg-based materials with the fastest degradation rate and Fe-based materials with the slowest degradation rate. From the perspective of medical complications, it is essential to understand the size and nature of the degradation products developed from biodegradable materials, as well as the stage at which these residues are eliminated from the body.
View Article and Find Full Text PDFFe-Mn-Si-based shape memory alloys (SMAs) have been extensively investigated since 1982 for various useful properties that enhance the development of different applications such as anti-seismic dampers for very tall buildings, pipe joints, or rail fasteners. In particular, the Fe-28Mn-6Si-5Cr (mass. %) alloy has been mainly used in vibration mitigation or self-adjustable axial displacement applications.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is used worldwide for packing, and for this reason, it is the main material in plastic waste. The paper uses granules of recycled PET (R-PET) as raw material for producing filaments for 3D printing, subsequently used for printing the test specimens in different ways: longitudinally and at angles between 10° and 40° in this direction. Both the filaments and the printed specimens experience thermally driven shape memory effect (SME) since they have been able to recover their straight shape during heating, after being bent to a certain angle, at room temperature (RT).
View Article and Find Full Text PDFSpecial materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace homogenization.
View Article and Find Full Text PDFDue to the pressing problems of today's world, regarding both the finding of new, environmentally friendly materials which have the potential to replace classic ones, and the need to limit the accelerated spread of bacteria in hospitals, offices and other types of spaces, many researchers have chosen to develop their work in this field. Thus, biopolymeric materials have evolved so much that they are gradually becoming able to remove fossil-based plastics from major industries, which are harmful to the environment and implicitly to human health. The biopolymer employed in the present study, Arboblend V2 Nature with silver nanoparticle content (AgNP) meets both aspects mentioned above.
View Article and Find Full Text PDFIt is essential to combine current state-of-the-art technologies such as additive manufacturing with current ecological needs. Due to the increasing demand for non-toxic biodegradable materials and products, human society has been searching for new materials. Consequently, it is compulsory to identify the qualities of these materials and their behavior when subjected to various external factors, to find their optimal solutions for application in various fields.
View Article and Find Full Text PDF