Publications by authors named "Nicoleta Hosszu Ungureanu"

DAP5/p97 is a member of the eIF4G family of translation initiation factors that has been suggested to play an important role in the translation of select messenger RNA molecules. We have shown previously that the caspase-cleaved form of DAP5/p97, termed p86, is required for the induction of the endoplasmic reticulum (ER)-stress-responsive internal ribosome entry site (IRES) of the caspase inhibitor HIAP2. We show here that expression of DAP5/p97 is enhanced during ER stress by selective recruitment of DAP5/p97 mRNA into polysomes via the DAP5/p97 IRES.

View Article and Find Full Text PDF

Translation of the X-linked inhibitor of apoptosis (XIAP) proceeds by internal ribosome entry site (IRES)-mediated initiation, a process that is physiologically important because XIAP expression is essential for cell survival under conditions of compromised cap-dependent translation, such as cellular stress. The regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the IRES element. We used RNA-affinity chromatography to identify XIAP ITAFs and isolated the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1).

View Article and Find Full Text PDF

Components of the cellular translation machinery are targets of caspase-mediated cleavage during apoptosis that correlates with the inhibition of protein synthesis, which accompanies apoptosis. Paradoxically, protein synthesis is required for apoptosis to occur in many experimental settings. Previous studies showed that two proteins that regulate apoptosis by controlling caspase activity, XIAP and Apaf-1, are translated by a unique, cap-independent mechanism mediated by an internal ribosome entry site (IRES) that is used preferentially under conditions in which normal cap-dependent translation is repressed.

View Article and Find Full Text PDF