Bioorg Med Chem Lett
February 2011
Rho kinase is an important target implicated in a variety of cardiovascular diseases. Herein, we report the optimisation of the fragment derived ATP-competitive ROCK inhibitors 1 and 2 into lead compound 14A. The initial goal of improving ROCK-I potency relative to 1, whilst maintaining a good PK profile, was achieved through removal of the aminoisoquinoline basic centre.
View Article and Find Full Text PDFFragment-based NMR screening of a small literature focused library led to identification of a historical thrombin/FactorXa building block, 17A, that was found to be a ROCK-I inhibitor. In the absence of an X-ray structure, fragment growth afforded 6-substituted isoquinolin-1-amine derivatives which were profiled in the primary ROCK-I IMAP assay. Compounds 23A and 23E were selected as fragment optimized hits for further profiling.
View Article and Find Full Text PDFPotent small molecule biaryl diketopiperazine FSH receptor agonists such as 10c (EC(50)=13 nM) and 11f (EC(50)=1.2 nM) were discovered through the design, synthesis and evaluation of three biaryl diketopiperazine optimization libraries with over 300 compounds. These libraries were prepared via solid-phase parallel synthesis using a cyclization-release method.
View Article and Find Full Text PDFHigh-throughput screening of two million compounds in 37 distinct encoded combinatorial libraries using FSH receptor transfected cells provided small molecule agonists such as 1 (EC(50)=3 microM) and 2 (EC(50)=3.9 microM), based on which a focused combinatorial library with a total of 31372 compounds was designed, synthesized, and screened to reveal 72 novel biaryl FSH receptor agonists such as 8a-c as well as a unique combinatorial SAR.
View Article and Find Full Text PDF